Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическое введение. Алгоритм RSA предложен в 1978 г





Алгоритм RSA предложен в 1978 г. тремя авторами: Р. Райвестом, А. Шамиром и А. Адлеманом. Это первый полноценный алгоритм работы с открытым ключом, который может работать как в режиме шифрования данных, так и в режиме цифровой подписи.

Надежность алгоритма RSA основана на трудности факторизации больших чисел и вычисления дискретных логарифмов в конечных полях.

В криптосистеме RSA открытый ключ КВ, секретный ключ kB, сообщение М и криптограмма С принадлежат множеству целых чисел

ZN={0,1,2,…,N-1}

где N – модуль:

N=P´Q

В данном случае P и Q – случайные большие простые числа. Для обеспечения максимальной безопасности выбирают P и Q равной длины и хранят в секрете.

Множество ZN с операциями сложения и умножения по модулю N образует арифметику по модулю N.

Открытый ключ КВ выбирают случайным образом так, чтобы выполнялись следующие условия:

где – функция Эйлера.

Функция Эйлера указывает количество положительных целых чисел в интервале от 1 до N, которые взаимно просты с N.

Второе из указанных условий означает, что открытый ключ КВ и функция Эйлера должны быть взаимно простыми.

Далее, используя расширенный алгоритм Евклида, вычисляют секретный ключ kB такой, что

или

Это можно осуществить, так как получатель сообщения В знает пару простых чисел P и Q и может легко найти . Заметим, что следует произвести проверку на взаимную простоту kB и KB.

Открытый ключ KB используется для шифрования сообщения, а секретный ключ kB – для расшифрования.

Шифрование определяет криптограмму С через пару (открытый ключ КВ, сообщение М) в соответствии со следующей формулой:

В качестве алгоритма быстрого вычисления значения С используется ряд последовательных возведений в квадрат целого М и умножений на М с приведением по модулю N.

Определение значения М по известным С, КВ и N практически не осуществимо при .

Однако обратную задачу, т.е. задачу расшифрования криптограммы С можно решить, используя пару (секретный ключ kB, криптограмма С) по формуле:

.

Подставляя в данную формулу значение для С, получаем:

Величина имеет важное значение в теории Эйлера, которая утверждает, что если НОД(x,N)=1, то

или в несколько более общей форме

.

Учитывая вышесказанное, получаем:

Таким образом, если криптограмму

возвести в степень kB, то в результате получим исходное открытое сообщение М, так как

Таким образом, получатель В, создавая криптограмму С, защищает два параметра: секретный ключ kB, пару чисел (P, Q), произведение которых дает значение модуля N.

Противнику известны лишь значения КВ и N. Если бы он смог разложить число N на множители, то, узнав тройку чисел (P, Q, KB), вычислил значение и вычислил секретный ключ. Однако, разложение достаточно большого числа на множители вычислительно не осуществимо, что и определяет криптостойкость алгоритма RSA.

Для алгоритма RSA этап создания ключей состоит из следующих операций:

1. Выбираются два простых числа p и q

2. Вычисляется их произведение n=(p´q)

3. Выбирается произвольное число e (e<n), такое, что НОД (e,(p-1)(q-1))=1, то есть e должно быть взаимно простым с числом (p-1)(q-1).

4. Методом Евклида решается в целых числах уравнение e ´d+(p-1)(q-1) ´y=1. Здесь неизвестными являются переменные d и y – метод Евклида как раз и находит множество пар (d,y), каждая из которых является решением уравнения в целых числах.

5. Два числа (e,n) – публикуются как открытый ключ.

6. Число d хранится в строжайшем секрете – это и есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e,n).







Дата добавления: 2015-10-15; просмотров: 420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия