Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Учитывая, что





, (18)

запишем (16) в виде:

у=A cos2π (19)

где Т - периодколебания, ν - частота.

Расстояние λ, на которое волна распространяется за период Т

λ=υT (20)

 

называется длиной волны.

Можно также определить длину волны и как расстояние между двумя ближайшими точками, фазы колебаний которых отличаются на 2π (рисунок 2).

 

 

       
 
 
   

 

 


 

 

Рис. 2

 

В дальнейшем более удобно использовать в уравнении волны косинус. Учитывая (19 и 20), уравнение бегущей волны, распространяющейся в направлении “+x”, можно представить в виде:

 

(21)

где - волновое число, показывающее, сколько длин волн укладывается на расстоянии, равном 2π метров.

Для бегущей волны, распространяющейся в направлении “-x”, получим:

 

(21а)

 

При распространении бегущей волны происходит перенос энергии в пространстве. Плотность кинетической энергии wk (равная кинетической энергии единицы объема) составляет

, где ρ; – плотность среды, u – скорость колебательного движения частиц среды (не путать со скоростью распространения волны v). Поскольку u = dy/dt, то из (21) получим:

= (22)

 

В отличие от обычных локальных колебаний (математический маятник, груз на пружине и т.п.), потенциальная энергия бегущей волны определяется не смещением некоторого участка от положения равновесия, а его относительной деформацией dy/dx (dx - длина участка в невозмущенном состоянии, dy – изменение длины участка при прохождении волны). Плотность потенциальной энергии (потенциальная энергия единицы объема) равна:

 

 

(22a)

 

где K0 = E.

Дифференцируя (21) по х и подставляя значение v, учитывая (1), получим:

 

= (23)

 

Примечание 3 Рассмотрим более подробно вывод формулы (23) Подставляем, найденное значение в выражение (22a). Если K0 = E, а E = ρ·v2, поскольку v = λν, или v = (2π/k)·(ω/2π), E = ω2ρ/k2, то

 

 

 

Как видно из (22) и (23), для бегущей волны в любой момент времени выполняется равенство: wk = wp. Иначе говоря, кинетическая и потенциальная энергии колеблются в одной фазе (т.е. достигают своих максимальных или минимальных значений одновременно). Это является существенным отличием от локальных колебаний, для которых кинетическая и потенциальная энергии колеблются в противофазе.

Плотность полной колебательной энергии для бегущей волны

w = wk + wp.

С учетом (22,23) получим

 

= =

= (24).

 

Эта величина колеблется во времени с частотой, вдвое большей частоты колебаний частиц среды. Среднее по времени значение плотности энергии волны для любой точки, через которую проходит волна, равно

 

(25).

 

Множитель 0.5 возникает за счет того, что среднее значение квадрата синуса за период как раз равно 0,5.

Таким образом, плотность колебательной энергии, переносимой волной, пропорциональна плотности среды и квадратам частоты и амплитуды.

Особую роль играют гармоническиеволны (см., например, уравнения (16) и (17)). Это связано с тем,что любое распространяющееся колебание, какова бы ни была его форма, всегда можно рассматривать как результат суперпозиции (сложения) гармонических волн с соответственно подобранными частотами, амплитудами и фазами.

 







Дата добавления: 2015-10-15; просмотров: 325. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия