Студопедия — Методика определения скорости звука в воздухе.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методика определения скорости звука в воздухе.






 

Возникновение собственных колебаний в столбе воздуха можно использовать для нахождения скорости распространения звука в воздухе. Эту скорость можно определить, зная длину волны λ; распространяющейся от источника колебаний с известной частотой , по формуле Эйлера:

 

(34)

Для измерения длины волны используется экспериментальная установка, состоящая из стеклянной цилиндрической трубы, внутри которой может перемещаться подвижной металлический поршень. На противоположном конце трубы укреплен микрофон, превращающий акустические колебания в электрические (рисунок 5). Последние усиливаются осциллографом, на экране которого можно наблюдать зависимость электрического сигнала от времени. На поверхности трубы имеется узкое отверстие, через которое из динамика в замкнутый объем (резонатор) поступает звуковая волна. В результате дифракции и отражения от стенок трубы в резонаторе образуется несколько типов колебаний. При определенных положениях поршня возникает стоячая волна, аналогичная той, которая возникала бы при падении на поршень плоской волны, распространяющейся вдоль оси трубы (назовем ее осью Х) и отражении от него. Перемещая поршень, можно добиться максимального сигнала в микрофоне. В этом случае положение пучности совпадает с положением мембраны микрофона, а на границе воздух-поршень образуется узел. Если частота фиксирована, то устойчивые колебания устанавливаются только при определенных расстояниях L между поршнем и мембраной, которые, как казалось бы, можно определить из формулы (31).

 

 

х2х1х0xmic

Рис. 5

Однако она справедлива только для идеального случая. Имеется несколько причин, по которым эта формула на практике оказывается весьма неточной.

Во-первых, данная формула соответствуют так называемым идеальным границам: акустическое сопротивление второй среды стремится к бесконечности (закрытая граница) или оно стремится к нулю (открытая граница). Так как акустическое сопротивление второй среды всегда имеет конечное значение, то узлы и пучности смещаются от закрытого и открытого концов трубы. Особенно сильным оказывается смещение пучности от открытого конца трубы. Пучность точно совпадала бы с открытым концом трубы, если бы акустическое сопротивление граничащей среды было равно нулю. Это соответствовало бы границе воздух – вакуум, что совершенно нереализуемо. Более того, в нашем случае на второй границе (в микрофоне) происходит частичное поглощение звука.

Второй причиной, по которой формула (31) оказывается неточной, являются так называемые волноводные эффекты, усиливающиеся по мере роста диаметра трубы.

Наконец, поглощение энергии звуковой волны воздухом также вносит коррективы в указанную формулу.

По указанным причинам формула (31) соответствует только идеальным условиям и на практике точно не выполняется. Однако можно воспользоваться следующим обстоятельством.

Пусть при некотором минимальном значении расстояния между поршнем и микрофоном L = Lmin в нашем резонаторе возникают устойчивые колебания, о чем будет свидетельствовать максимальное значение сигнала в микрофоне (положение пучности совпадает с координатой мембраны xmic). Координату соответствующей границы поршень-воздух (положение узла) обозначим х0. По указанным выше причинам, зависимость амплитуды стоячей волны от пространственной координаты х вдоль оси трубы в интервале между х0 и xmic не будет точно описываться формулой (28). Как показывает опыт, в нашем случае, как и в ранее рассмотренном идеализированном, при увеличении длины столба воздуха на величину, равную точно λ;/2, снова возникают устойчивые колебания и в микрофоне снова достигается максимум интенсивности. Увеличение длины столба воздуха достигается перемещением отражающей границы (поршня) в направлении от микрофона в новое положение х1 . При этом модуль разности х1 - х0 (равный разности длин столбов воздуха), с высокой степенью точности равен λ;/2.

В пространстве между х1 и х0 образуется обычная стоячая волна, для которой зависимость амплитуды вдоль оси трубы уже хорошо описывается формулой (28). Распределение же амплитуды вдоль оси трубы в промежутке между х0 и xmic будет таким же, как и в первом случае. При достаточно длинной трубе возможно несколько положений поршня, при которых достигается максимум сигнала в микрофоне, и расстояние между любыми такими соседними положениями поршня с высокой степенью точности будет составлять λ;/2.

 







Дата добавления: 2015-10-15; просмотров: 340. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия