Студопедия — ГЛАВА I РАЗВИТИЕ ФИЗИЧЕСКИХ ПРЕДСТАВЛЕНИЙ В НАУКЕ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЛАВА I РАЗВИТИЕ ФИЗИЧЕСКИХ ПРЕДСТАВЛЕНИЙ В НАУКЕ






1.1. Фундаментальные физические теории

I. Механистическая картина мира

Механика является первой фундаментальной физической теорией. Важнейшими понятиями механики стали - материальная точка как абстракция, абсолютно твердое тело как идеализация высокого уровня, масса как мера количества вещества, вес как сила, с которой тело действует на опору. Эти понятия выражаются через физические величины: импульсы, силы, энергия, координаты. Ключевым понятием механики является движение. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инерции является масса. Универсальным свойством тел является тяготение.

Механистические представления (механистическая картина мира) формируются на основе гелиоцентрической системы Н. Коперника, экспериментального естествознания Г. Галилея, законов небесной механики И. Кеплера и механики И. Ньютона. Создателем механики считают Исаака Ньютона. В 1686 году он представил свой труд «Математические начала натуральной философии», в котором давалось математическое доказательство гипотезы Коперника, предложенной Кеплером, где указано, что все небесные движения объясняются на основании единственного тяготения к центру Солнца, обратно пропорционального квадрату расстояний. Этот труд состоит из трех книг, в которых представлена картина мира, основанная на законах механики, где доказано всемирное тяготение как следствие из применений механики к движениям небесных тел. В книгах сформулированы три закона движения (законы Ньютона), даны определения физических величин, изложены основы кинематики (раздел механики, изучающий движение тел без учета их массы и действующих на них сил) и динамики материальной точки, твердого тела, механика жидкостей и газов, а также сформулирована система мира с точки зрения закона всемирного тяготения. Понимание действия закона пришло к Ньютону в процессе анализа и систематизации разнообразных фактов: яблоко притягивается к Земле, воды океанов - к Луне, планеты - к Солнцу, значит, все тела притягиваются друг к другу вследствие наличия у них массы.

Характерные особенности механистической картины мира

1. В рамках механистической картины мира сложилась дискретная (корпускулярная) модель реальности. Материя - вещественная субстанция, состоящая из атомов и корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

2. Концепция абсолютного пространства и времени: пространство трехмерно, постоянно и не зависит от материи; время не зависит ни от пространства, ни от материи; пространство и время не связаны с движением тел, они имеют абсолютный характер.

3. Движение - простое механическое перемещение. Законы движения являются фундаментальными законами мироздания. Тела двигаются равномерно и прямолинейно, а отклонения от этого движения есть действие на них внешней силы (инерции). Мерой инерции является масса. Универсальным свойством тел является сила тяготения, которая является дальнодействующей. Принцип дальнодействия предложил Ньютон. Согласно этому принципу, взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных посредников. Концепция дальнодействия основана на понимании пространства и времени как особых сред, вмещающих взаимодействующие тела.

4. Все механические процессы предопределялись законами механики и подчинялись принципу детерминизма. Детерминизм - философский подход, признающий объективную закономерность и причинную обусловленность всех явлений природы и общества, отрицание беспричинных явлений. Случайность исключалась из данной картины мира. Такой жесткий детерминизм находил свое выражение в форме динамических законов. Динамический закон - это закон, управляющий поведением отдельного объекта и позволяющий устанавливать однозначную связь его состояний. Динамический закон, абстрагируясь от случайности, выражает непосредственную необходимость. Поэтому он дает отражение объективной действительности с точностью, исключающей случайные связи.

5. На основе механистической картины мира в XVIII - XIX вв. была разработана земная, небесная, молекулярная механика. Макромир и микромир подчинялись одним и тем же механическим законам. Это в результате привело к абсолютизации механистической картины мира, которая стала рассматриваться в то время как универсальная.

II. Электромагнитная картина мира

Данная модель природы возникла в конце XIX века. Механистический способ мышления уже был не способен объяснить новые эмпирические факты, полученные в разных областях научного знания: химии, биологии, космологии и др. М. Фарадей первым пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными,

непрерывными. Им были сформулированы начала электромагнетизма. Идеи Фарадея нашли отклик в работе Д. Максвелла, который создает в результате теорию электромагнитного поля. Согласно данной теории, весь мир заполнен электромагнитным эфиром, пустоты в нем нет. Электрическое, магнитное и электромагнитное поля трактовались как состояния эфира, который был их носителем. Поскольку эфир был средой для распространения света, то его называли еще «светоносным эфиром». Важнейшими понятиями теории являются: заряд, который может быть как положительным, так и отрицательным; напряженность поля - сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке. Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую и магнитную силы, называется электромагнитной. Электрические силы (поле) соответствуют покоящимся зарядам, магнитные силы (поле) - движущимся зарядам. Все многообразие этих сил и зарядов описывается уравнениями Максвелла.

Характерные особенности электромагнитной картины мира

1. В рамках электромагнитной картины мира сложилась полевая, континуальная (непрерывная) модель реальности. Материя рассматривалась как единое непрерывное поле с точечными силовыми центрами - электрическими зарядами и волновыми движениями в нем. Мир - это электродинамическая система, построенная из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

2. Ньютоновская концепция дальнодействия заменяется фарадеевским принципом близкодействия. Он утверждал, что любые взаимодействия передаются полем от точки к точке, непрерывно и с конечной скоростью.

3. В середине XIX века появилась кинетическая теория газов или статистическая механика, которая основывалась на теории вероятности. Случайность, вероятность с этого времени нашли свое место в физике и были отражены в форме статистических законов. Статистический закон - это закон, управляющий поведением больших совокупностей и в отношении отдельного объекта, позволяющий делать лишь вероятностные выводы о его поведении. Данный закон выражает диалектическую связь необходимости и случайности. Он не исключает случайность, а рассматривает ее как форму проявления необходимости.

4. Игнорирование дискретной, атомистической природы вещества приводит максвелловскую электродинамику к целому ряду противоречий, которые снимаются созданной Г. Лоренцом электронной теории или микроскопической электродинамики. Эта теория восстанавливает в правах дискретные электрические заряды и сохраняет поле как объективную реальность.

5. Учитывая законы электродинамики, А. Эйнштейн ввел идею относительности пространства и времени. Тем самым было устранено противоречие между континуальными (полевыми) представлениями о материи и ньютоновской концепцией абсолютного пространства и времени. В результате сформировалась реляционная (относительная) концепция пространства и времени: пространство и время связаны с процессами, происходящими в поле, т.е. они несамостоятельны и зависимы от материи. ОТО стала последней крупной теорией (1916 г.), созданной в рамках электромагнитной картины мира.

III. Квантово-полевая картина мира

Истоки учения об атоме и квантовая теория

Первым ввел понятие материи (субстанции) греческий философ Фалес Милетский в VI веке до н. э. считая, что этой материей является вода. Фактически, это было первое материалистическое учение античности.

Другой философ Анаксимандр, ученик Фалеса, отрицает возможность воды быть первоматерией и считает, что первоматерия есть некое бытие, несхожее ни с каким веществом. Существует вечное движение по превращению форм бытия.

Анаксимен полагал, что первоматерия - это воздух. Данный взгляд мало чем отличался от взгляда Фалеса.

Ближе всего к современному взгляду физики на мир был Гераклит. Гераклит в качестве первоматерии называл огонь. В самом деле, как будет показано далее, найденное Эйнштейном соотношение массы и энергии позволяет четко себе представить огонь - энергию в современном понимании - как первопричину всего сущего.

Эмпедокл рассматривает все сущее с позиций четырех элементов: земли, воды, огня и воздуха. Движущие силы - любовь и вражда. Плюрализм - наличие нескольких элементов в качестве субстанциональных - преодолевает трудности монизма в объяснении многообразия окружающей действительности. Остается нерешенным вопрос о возможности преобразования элементов друг в друга.

Анаксагор доходит до предела в плюралистическом мировоззрении и утверждает о том, что вещи состоят из «семян». Существует бесконечное множество «семян», которые в разном соотношении и по-разному взаимно расположены в вещах. Многообразие мира вещей объясняется с позиции количественного и позиционного различия в их «семенном» составе.

Философами Левкиппом и Демокритом было введено понятие атома, вечного неразделимого и не обладающего никакими специфическими свойствами. Атомы движутся в пустоте, что так же важно, поскольку по современным представлениям, пустота - необходимый атрибут мате-

рии. Пустота, по теории относительности Эйнштейна, определяет геометрию пространства и является условием всякого движения.

Платон соединил онтологичность чисел пифагорейцев и элементы Эмпедокла, поставив во взаимное соответствие элементы и правильные геометрические фигуры. Важно, что элементы сопоставлены с математическими абстракциями, а сами элементы преобразуются друг в друга путем преобразования соответствующих им правильных фигур. Правда Платон не указывает, что он имеет в виду под соответствием правильных фигур и элементов - то ли это действительная форма элементов, огня, например, в виде квадрата, то ли это некоторое другое соответствие в мире идей.

Проведем аналогию между древними и современными физическими представлениями. Так, современные элементарные частицы - протоны, нейтроны, электроны и другие вполне соответствуют «атомам» Демокрита. Элементарные частицы материальны и составляют любое вещество. Есть некоторое отличие в понятии неразложимости этих «атомов». При столкновении этих частиц они распадаются на другие частицы. Но, что самое интересное, эти частицы тоже элементарные частицы, а не части первых.

По аналогии с концепцией элементов (огонь, земля, вода, воздух) в качестве единственного элемента, огня, выступает энергия.

Самым интересным является то, что Платон также имел отдаленную, но в общих чертах правильную тенденцию рассматривать элементы вместе с их геометрическими идеями. Дело в том, что уже создано, пока на качественном уровне, единое уравнение материи. Собственные решения этого уравнения суть элементарные частицы.

На протяжении христианской эпохи взоры людей обратились от исследования природы в область трансцендентного. Людей интересовал смысл жизни, а материальный мир рассматривался как временный и не стоящий слишком большого внимания. Вопросы мироустройства, Вселенной считались хорошо отраженными в Писании, и этого было достаточно.

Со времени начала Эпохи Возрождения наблюдается постепенный поворот человека к природе. Возникают реалистические течения. Ключом реалистических воззрений можно считать процедуру объективации. Объективация отстраняет исследователя от исследуемого объекта. Влияние на исследуемую систему со стороны инструментов исследователя может быть сколь угодно малым. Объективным считается то, что никак не зависит от того, существует ли субъект или нет.

Одной из разновидностей реализма является метафизический реализм Декарта. Декарт считал самоочевидным существование реальности, мира вещей. Собственное существование можно было доказать рассматривая сомнение в этом существовании. Отсюда вытекает наличие феномена мышления, а затем и доказательство собственного существования: «Cogito ergo sum» (Мыслю, значит, существую - лат.).

Декарт - представитель рационализма. Кроме рационалистического метода познания, несомненно являющегося основой всякого научного познания, Декарт собственно произвел отделение исследователя и исследуемого объекта в явной форме. Такой взгляд на мир, как бы со стороны, был главенствующим в течение последующих двух с половиной веков. Закоренелость этой мысли в головах ученых XX в. вызывала серьезные трудности в понимании и признании новой, квантовой, теории. Но в те времена не могло быть и речи ни о чем другом: для проведения какого-либо серьезного исследования необходимо абстрагирование, выключение из рассмотрения тех свойств объекта, которые явным образом не изменяются в ходе исследуемого процесса.

Других философов - Беркли, Локка и Юма, не устраивал рационалистический подход Декарта. Локк сказал: «Ничего нет в разуме, чего ранее не было бы в чувстве». Эмпиристы не задавались вопросами сущностных взаимосвязей между явлениями, так как по Беркли мысленная связь между явлениями, устанавливаемая нами есть иллюзия причинности, а реальное положение дел нам неведомо.

Наступило время кантовской философии. Прежде вопросов бытия Кант спросил, а возможно ли знание о вещах? Он приходит к довольно пессимистическому ответу, что вещь существует для себя самой. Познание ее сущности невозможно.

Кант задает неприятный вопрос: «А существует ли мир вещей вообще?» Ответ на него Кант находит в представлениях об априорных формах. Априорные формы это такие схемы познания, которые всегда присутствуют при любом акте познания. По Канту, невозможно помыслить их отсутствие или неабсолютность. Такими формами являются сам мир вещей и явлений, закон причинности и пространство. Если мы, например, попытаемся представить, что существует несколько пространств или его не существует, то все равно множественное будет находиться в каком-то другом пространстве, а вместо отсутствующего пространства придет пустое, но все равно пространство. Аналогичная ситуация происходит с законом причинности.

Пространство и закон причинности считались априорными формами вплоть до развития современного физического мировоззрения. Естественно, что во времена Канта их никаким иным образом нельзя было и помыслить.

Пространство в квантовой теории можно отнести к априорной форме. В этой схеме познания происходит рассмотрение движения частиц, протекания процессов.

Гораздо труднее дело обстоит в общей теории относительности. Пространство оказывается зависимым от расположения масс. Кривизна пространства оказывается переменной и определяется тем, насколько массив-

ное тело находится в данной точке. Проводились попытки провести экспериментальное доказательство искривления пространства вблизи больших масс. Так при солнечном затмении наблюдается смещение положения звезд. Конечно, наблюдаемые явления могут быть объяснены не только искривлением световых лучей, проходящих вблизи Солнца, но факт остается фактом.

Квантовая теория лишает статуса априорности закон причинности. Как было уже сказано, повеление элементарных частиц описывается только статистически в силу неполноты нашего знания. Тем не менее, утверждать, что, то или иное движение, положение частицы имеет свои причины неверно. Изменение координаты частицы не имеет никакой причины! Мир недетерминирован. Такой взгляд на вещи совершенно не соответствует классическим представлениям и прежней физики и философии.

Надо заметить, что сказанное выше не отнимает у пространства и закона причинности статуса априорности полностью. Описание и осмысление любого эксперимента, прибора, результатов опыта невозможно без использования привычных терминов и категорий. Поэтому на макроскопическом уровне пространство и закон причинности являются априорными формами. Таким образом, границы применимости априорных форм четко обозначены уровнем исследования.

Квантовая теория и строение материи

Понятие материи, на самом деле, многоуровневое. Рассмотрим эти уровни по отдельности.

Из чего построено всякое вещество? Атомы химических элементов образуют соединения посредством химической связи. Химическими методами можно поменять связи между атомами, но не затронуть типового свойства атома - превратить его в другой элемент. До открытия ядерных реакций понятие материи в основном сводилось к атомам и их взаимосвязям.

Открытие радиоактивности, эксперименты Резерфорда показали сложность строения атома. Атом содержит ядро и электроны. Расщепление ядер показало, что они в свою очередь, так же как и атомы, сложны. Вводится понятие элементарных частиц. Этими частицами являются нейтрон, протон и электрон. На сегодняшний день при данном уровне развития науки понятие материи сводится к элементарным частицам. Но это еще не предел.

Установлено, что столкновение элементарных частиц рождает новые элементарные частицы, но это не обломки первых, а такие же элементарные частицы. Частицы превращаются друг в друга, в излучение, поскольку их сущность - энергия, та самая потенция, о которой еще мыслил Аристотель. Более того, эти частицы в состоянии образовываться из кинетической энергии - энергии движущегося тела.

Энергия - подлинное бытие. Она же и есть материя, хотя не обязательно обладает плотностью, как это должно было бы быть при классическом подходе. Энергия - это то, из чего все образуется и во что, в конечном счете, может превратиться.

Энергия воплощается в вещах, в излучении, во взаимодействиях тел - все это формы материи, а так же ее движения. Материя подчиняется единому уравнению. Ранее в математике было показано, что существует ограниченное число групп симметрии. Данные группы лежат в основе законов природы, точнее в их формальном математическом представлении. Универсальное уравнение материи так же симметрично относительно этих групп. Решения этого уравнения представляют собой элементарные частицы.

Не все так безоблачно с пониманием мира с позиций квантовой теории. Существует пока непреодоленное противоречие между квантовой теорией и теорией относительности.

Связано это с тем, что в теории относительности присутствует предельное ограничение точности по времени. Отсюда вытекает возможность сколь угодно больших энергий в соответствие с принципом неопределенности.

Данное рассмотрение позволяет сделать вывод о том, что и древние мыслители имели некоторое правильное понимание проблемы материи. Материя действительно строительный материал и потенция, так как энергия это и возможность совершения некой работы, а так же источник возникновения элементарных частиц.

С другой стороны, отчасти прав был Платон, когда говорил, что элементам - элементарным частицам в современном понимании - соответствует число, решение универсального уравнения материи в рамках квантовой теории.

Не стоит полагать, что древние философы уже, якобы, знали все то, до чего дошла современная наука. Их рассуждения были чисто умозрительными и в ряде случаев неверными. Реальная ситуация такова, что современные представления о материи можно соотнести с представлениями древних и увидеть много общего. Главная особенность современных взглядов в том, что они, в отличие от древних взглядов, подкреплены серьезнейшим эмпирическим материалом.

В течение длительного времени прежде развития квантовой теории предполагалось существование некоего всепроникающего вещества. Необходимость в таком предположении исходила из наблюдаемого факта - свет проходит через вакуум. Следовательно, поскольку волновые свойства света были уже установлены, необходимо было постулировать наличие среды, в которой световые волны распространяются. Было непонятно, есть ли он вообще, а если и есть, то, движется ли он вместе с движущимся телом или нет. В любом случае имелась возможность обнаружить наличие «эфирного ветра». Если эфир покоится относительно Земли, то ветер бу-

дет около 30 км/с! Если же движется вместе с Землей, то на разных высотах величина «эфирного ветра» должна быть различной.

Для проверки гипотезы существования эфира Майкельсон и Морли провели опыт, который был основан на том, что при наличии «эфирного ветра» скорость света должна быть разной в зависимости от направления «ветра». Разность скоростей света в разных направлениях приводит к появлению разности хода световых лучей в интерферометре, ориентированном по направлению движения Земли. Если бы интерференционная картина изменилась при ином ориентировании интерферометра относительно движения Земли, то наличие эфира можно считать доказанным. На деле никакого эфирного ветра не оказалось.

После того, как с распространением света проблемы были сняты, и стало ясно, что свет спокойно может распространяться в пустоте, встал вопрос о зависимости скорости света от скорости среды, в которой он распространяется. На опыте оказалось, что скорость света в движущейся по направлению распространения света воде даже меньше, чем в покоящейся. Такие, странные на первый взгляд, результаты привели ученых в замешательство. В последствии оказалось, что скорость света по отношению к движущемуся навстречу ему телу не превышает скорость света в вакууме.

Эйнштейн сделал смелое предположение: скорость света в вакууме - максимально достижимая материальным телом скорость. Это предположение стало постулатом теории относительности. Поскольку предельной скоростью движения материального тела может быть скорость света в вакууме, то, не вдаваясь в конкретные выражения теории относительности, оказывается, что время и расстояние в движущейся системе отсчета относительно другой системы связано с ее скоростью относительно этой второй системы отсчета.

В теории относительности вводится понятие одновременности, отличное от обыденного понятия. Одновременными могут считаться только те события, информация о которых, например, свет, прибывают в точку наблюдения в один и тот же момент времени, судя по часам, находящимся в этой точке.

Весьма интересным оказалось соотношение массы и энергии, найденное Эйнштейном. В связи с этим возникли антиматериалистические тенденции в философии. Правда эти антиматериалистические тенденции не получили широкого распространения.

На рубеже XIX и XX веков активно развивается квантовая теория. Рэлей и Джинс пытались объяснить с позиций классической механики хорошо известный факт, заключающийся в том, что при нагревании тела независимо от его цвета, оно начинает светиться цветом, зависящим от температуры. Сначала тело светится красным, далее оранжевым, потом при еще большем повышении температуры белым цветом. Представле-

ния классической механики, применяемые к объяснению данного факта, приводили к противоречиям с наблюдениями. Кроме того, классическая механика была абсолютно не в состоянии объяснить устойчивость атомов в свете планетарной модели, бытовавшей в то время. Стало ясно, что надо менять теорию.

Макс Планк - немецкий физик, попытался объяснить наблюдаемые явления на основе некоторых соотношений, казавшихся ему верными. Поначалу данные соотношения М. Планка имели характер догадок, причем сам Планк продолжал их анализировать. Физический смысл этих соотношений был неясен даже самому М. Планку! Оказалось, что М. Планк говорил о новой физической реальности - квантованности энергии, которую может поглощать или испускать атом. Дело в том, что по предположению М. Планка значение энергии атома не континуально, а прерывисто.

Нильс Бор положил начало «матричной механике». Здесь уже происходит отказ от традиционной планетарной модели атома, и серьезнейшим образом формализуются утверждения теории. Матричная механика, в отличие от классической, объясняла устойчивость атомов.

Луи - де - Бройль развивает представления о соответствии всякой элементарной частице волны. Развитие этим представлениям дал немецкий физик Э. Шредингер. Основную трудность в понимании, представляло собой это самое «соответствие». Например, как может свет, поток фотонов, быть одновременно волной? Эксперимент, как ни странно, указывал на дуалистическую природу света. Позднее Шредингер показал эквивалентность своих исследований с «матричной механикой». Тем не менее, противоречия в волновом и корпускулярном представлении электронов и света оставались неразрешенными.

Настоящий успех достигнут к 1924-26 гг. В физику вводится понятие «волны вероятности». Вот как это описывает В. Гейзенберг: «Волна вероятности означала нечто подобное стремлению к определенному протеканию событий. Она означала количественное выражение старого понятия «потенция» аристотелевской философии».

Введение вероятностных представлений в физику дало совсем иное понимание процессов микромира. Несмотря на это нововведение, классические представления не утратили своего значения. Теперь для применения классической или квантовой теории обозначились четкие границы. На самом деле, классические представления не совсем точно соответствуют природе.

Так одновременно сколь угодно точно определить координату и импульс частицы невозможно. Произведение этих неопределенностей имеет порядок постоянной Планка. Проблема состоит в том, что в отличие от прежних представлений, когда исследователь и его инструменты никак (или почти никак) не влияли на результаты эксперимента, исследование микромира производится другими объектами того же микромира. Например,

чтобы определить координату электрона, необходимо, чтобы он провзаимодействовал с фотоном, иначе мы никак не получим информации. Это взаимодействие существенно изменит координату электрона. Аналогичная ситуация с импульсом. В микромире описание процессов возможно лишь на вероятностном уровне.

Итак, в конце XIX века в физике произошло множество открытий, носящих революционный характер: открытие А. Беккерелем в 1897 году явления радиоактивности; в 1900 году М. Планк выдвинул квантовую гипотезу о прерывности процессов излучения. В результате в физике сформировалось два, казалось несовместимых представления о материи - корпускулярное и континуальное (полевое). В 1913 году Н. Бор предложил свою модель атома (стационарную), в которой электрон, вращавшийся вокруг ядра, излучал энергию только порциями при переходе с одной орбиты на другую. Это противоречило известным законам электродинамики, но позволило сделать прорыв в науке, т.е. создать фундаментальные физические теории - квантовую механику и квантовую электродинамику. Над их созданием работали Э. Резерфорд, Л. де Бройль, Э. Шредингер, В. Гейзенберг, М. Борн.

Важнейшие понятия новых теорий

Корпускулярно-волновой дуализм - наличие у каждой частицы материи свойств волны и частицы одновременно.

Cоотношение неопределенностей Гейзенберга - невозможность одновременного измерения координат и импульса частицы.

Мировые универсальные константы - постоянные, которые не сводимы друг к другу и имеют значение для всей наблюдаемой части Вселенной:

- скорость света в вакууме (с = 300 000 км/с) - это максимальная скорость для всех возможных взаимодействий в природе;

- гравитационная постоянная (G), используемая в законе всемирного тяготения;

- постоянная Планка (h) - это квант энергии, входит во все уравнения, описывающие процессы на уровне микромира;

- постоянная Больцмана (k), она устанавливает связь между микроскопическим динамическими явлениями и макроскопическими характеристиками состояния объединений частиц.

Характерные особенности квантово-полевой картины мира

1. Меняется представление о движении, которое становится лишь частным случаем фундаментальных физических взаимодействий.

Физическое взаимодействие

Взаимодействие представляет собой воздействие одних объектов на другие путем обмена материей и движением.

Движение представляет собой любое изменение, взаимодействие вообще.

Взаимодействие выступает как движение материи.

Любые формы движения есть проявление фундаментальных взаимодействий материи (гравитационного, электромагнитного, слабого и сильного).

Фундаментальные типы взаимодействий

Сильное - взаимное притяжение и отталкивание составных частей атомного ядра. Характеризуется выделением очень большого количества тепла. Действует на крайне коротких расстояниях (10-15 м между частицами в атомных ядрах. «Склеивает» протоны и нейтроны в ядре атома.

Слабое действует только в микромире и описывает некоторые виды ядерных процессов. Оно в 10 раз слабее сильного, но сильнее гравитационного. Не приводит к связыванию частиц. Управляет распадом радиоактивных элементов и эффективной термоядерной деятельностью Солнца.

Электромагнитное имеет универсальный характер и может выступать в зависимости от знака заряда либо как притяжение, либо как отталкивание. Играет главную роль в притягивании протонов и электронов друг к другу, благодаря чему возможно образованию молекул. Одним из проявлений силы этого взаимодействия является молния. Оно в 100-1000 раз слабее сильного взаимодействия. Электромагнитное взаимодействие описывается электростатикой, электродинамикой, квантовой электродинамикой.

Гравитационное имеет универсальный характер и выступает в виде притяжения. Оно является самым слабым из всех остальных взаимодействий (сила электростатического отталкивания электронов в 10 раз больше силы их гравитационного притяжения). На уровне атомов выражено очень слабо. Более заметно его влияние на большие объекты: планеты, звезды, галактики. В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона. В ОТО гравитация - проявление кривизны пространственно-временного континуума (поле тяготения создает искривление пространства тем больше, чем больше тяготеющая масса). В квантовой теории, квантами поля тяготения являются гравитоны, которые переносят энергию, обладают импульсом и другими характеристиками.

Современная физика объединяет все 4 типа физического взаимодействия в единое суперсимметричное суперполе. Предлагается рассмотрение эволюции Вселенной из этого суперсимметричного состояния, в котором вся материя представлена только физическим вакуумом.

Спонтанное нарушение симметрии вакуума в процессе расширения Вселенной приводит к многообразию физического мира. Успех построения единой теории поля связывается с возможностями синтеза ОТО и квантовой теории поля.

2. Все процессы описываются на основе принципа близкодействия - взаимодействия передаются соответствующими полями от точки к точке, скорость передачи взаимодействия конечна и не превышает скорости света.

3. Окончательно утверждаются представления об относительности пространства и времени, их зависимости от материи. С точки зрения ОТО, они сливаются в едином четырехмерном пространстве-времени, которое не существует вне материальных тел.

4. Утверждается понятие причинности в физике:

- причинность представляет собой связь состояний во времени. Данная связь предполагает на основе знания предшествующего состояния системы возможность предсказать ее последующее состояние;

- в научных теориях под причинностью понимают закономерное, необходимое протекание процессов. Причинно обусловленные процессы тем и характеризуются, что в них задание начального состояния определяет последующие состояния. Именно в существовании такой последовательности состояний и заключается выражение принципа причинности в науке;

- общее отношение причинных связей и функциональных зависимостей предстает следующим образом: функциональные зависимости являются математической формой выражения причинных связей. Причинность характеризует объективные связи, существующие в действительности; функциональные зависимости позволяют наиболее адекватно отразить эти связи в познании;

- вопрос о природе причинности и причинных отношениях в физике конкретизируется в проблеме соотношения динамических и статистических законов с объективными закономерностями.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме, в виде статистических законов. Они соответствуют более глубокому уровню познания природных закономерностей. В результате оказалось, что в основе нашего мира лежит случайность, вероятность.

IV. Современная физическая картина мира

Фундаментальной концепцией современной физической картины мира признается теория относительности А. Энштейна.

Теория относительности А. Эйнштейна

Данная теория полностью ломает привычные понятия пространства, массы, времени. Оказывается, что геометрия пространства зависит от расположения масс. Вокруг массивных тел пространство несколько искривляется. Чтобы это проверить делались эксперименты по наблюдению расположения звезд в период солнечного затмения (о них уже говорилось ранее).

Самым необычным, с привычной точки зрения, в общей теории относительности является рассмотрение существования вещи как процесса движения в пространстве метрических координат и времени. Тело движется по кратчайшему пути в этом пространстве.

Теория относительности не оставляет без внимания вопросы космологии. Бесконечно или нет пространство? По представлениям общей теории относительности пространство имеет циклический профиль. Таким образом, можно себе представить, что наблюдатель, направивший свой взор из любой точки пространства через мощный телескоп, увидит собственный затылок!

Теория относительности включает в себя частную и общую теорию относительности.

Основывается:

на постулате относительности, утверждающем неизменность физических законов при переходе от одной системы отсчета к другой;

на постулате постоянства скорости света.

3. Вскрыла конкретные формы органической взаимосвязи пространства и времени. Пространство и время перестали рассматриваться как независимые друг от друга сущности. В физику вводится представление о пространственно-временном четырехмерном континууме. Континуум - непрерывное, связанное, целостное единство точек, чисел или физических величин.

4. Установила зависимость пространства и времени от распределения движения и материи, т.е. показала тем самым относительность свойств пространства-времени.

5. Вскрыла относительность массы и энергии. Закон сохранения массы и закон сохранения энергии потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон сохранения энергии или массы (В. Гейзенберг). Каждой массе соответствует энергия; любой энергии - масса. Всякий процесс с выделением энергии связан с

потерей массы, и обратно, приобретая энергию, тело одновременно приобретает и массу.

6. Установила эквивалентность тяжелой и инертной масс.

Специальная теория относительности (СТО) (1905):

Установила, что абсолютной одновременности событий, происходящих в разных системах, т.е. в разных условиях движения, не может быть, ибо не существует единого всегда и везде равномерного потока времени, что эта одновременность носит относительный характер;

Доказала, что пространственные и временные характеристики в различных соотносительных материальных системах отсчета будут различными. Эти изменения зависят от скорости относительного движения тел. По мере возрастания скорости движения длина движущегося тела в направлении движения сокращается и течение времени соответственно замедляется (релятивистское замедление времени);

Установила зависимости пространственных и временных характеристик от движущихся относительно друг друга материальных систем;

Установила органическую связь пространства и времени, связав их в единое целое - пространственно-временной континуум.

Общая теория относительности (ОТО) (1916):

Доказала еще большую непосредственную зависимость свойств пространства-времени от движущейся материи, в частности, от концентрации и движения материальных масс;

Установила, что отклонение реальных свойств пространства от евклидовых («кривизна» пространства), а также изменение ритма течения времени обусловливаются материальными массами, полями тяготения. При наличии сильных полей тяготения искривление пространства увеличивается, а ход времени замедляется;

Пространство-время является выражением наиболее общих отношений материальных объектов и вне материи существовать не может;

Пространство и время - не самостоятельные субстанции, а формы существования единственной субстанции - материи.

Описанные выше положения теории относительности приводят к серьезным понятийным проблемам. Сущность ее заключается в том, что, как уже говорилось ранее, те понятия, к которым мы привыкли теперь, означают нечто другое. Пространство, время, масса, считавшиеся ранее абсолютными и основными понятиями любого физического опыта, находятся теперь в сложной взаимосвязи.

Характерные особенности:

1. Современные представления о строении материи предполагают в ее основе 350 фундаментальных частиц и античастиц;

2. Многообразие и единство мира основывается на взаимодействии и взаимопревращении фундаментальных частиц и античастиц;

3. Движение есть проявление фундаментальных взаимодействий, переносчиками которых являются фотоны, глюоны и промежуточные бозоны;

4. Принципиальные особенности: системность, глобальный эволюционизм, самоорганизация, историчность.

Принципы современной физики

Наряду с фундаментальными физическими теориями существуют более общие законы, влияние которых распространяется на все физические процессы и формы движения материи. Эти законы называются принципами современной физики.

1. Принцип соответствия, сформулирован Н. Бором в 1923 году. Суть - любая новая, более общая теория, являющаяся развитием предыдущих классических теорий, справедливость которых была экспериментально установлена для определенных групп явлений, не отвергает эти классические теории, а включает их в себя.

2. Принцип неопределенности, сформулирован В. Гейзенбергом в 1927 г. Суть - принципиально нельзя определить одновременно координату и импульс частицы точнее, чем допускает соотношение неопределенностей Гейзенберга. В классической механике частица, движущаяся по определенной траектории, имеет точные значения координаты, импульса, энергии; микрочастица, обладающая волновыми свойствами, не имеет траектории, а значит, не имеет одновременно точных значений координаты и импульса. Это означает, что координаты, импульс и энергия микрочастицы могут быть заданы лишь приблизительно.

3. Принцип дополнительности, сформулирован Н. Бором в 1927 году. Суть - при экспериментальном исследовании микрообъектов могут быть получены точные данные либо об их энергиях и импульсах, либо о поведении в пространстве и времени. Эти взаимоисключающие характеристики не могут применяться одновременно, поскольку свойства квантовых объектов (квантовый объект - это не волна и не частица) запрещают их одновременное использование. Однако эти свойства в равной мере характеризуют микрообъект, что предполагает их использование в том смысле, что вместо одной единой картины необходимо применять две: энергетически-импульсную и пространственно-временную.

1.2. Квантовая механика и элементарные частицы

Квантовая механика (волновая механика) - теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте.

Квантовая механика описывает законы движения микрочастиц. Однако поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, постольку квантовая механика применяется для объяснения многих макроскопических явлений. Например, квантовая механика позволила понять многие свойства твердых тел, последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звезды, выяснить механизм протекания термоядерных реакций в Солнце и звездах.

Для классической механики характерно описание частиц путем задания их положения в пространстве (координат), скоростей и зависимости этих величин от времени. Опыт показал, что такое описание частиц не всегда справедливо, в частности, оно не применимо для описания микрочастиц.

Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности.

Нерелятивистская квантовая механика (как и механика Ньютона для своей области применимости) - это законченная и логически непротиворечивая фундаментальная физическая теория.

Релятивистская квантовая механика не является в такой степени завершенной и свободной от противоречий теорией.

Если в нерелятивистской области можно считать, что взаимодействие передается мгновенно на расстоянии, то в релятивистской области оно распространяется с конечной скоростью, значит, должен существовать агент, передающий взаимодействие - физическое поле. Трудности релятивистской теории - это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская квантовая механика.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка, которая называется также квантом действия и имеет размерность действия. Если в условиях задачи физические величины размерности действия значительно больше постоянной Планка, то применима классическая механика. Формально это условие и является критерием применимости классической механики.

Общая теория относительности - неквантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. Применение квантовой теории к гравитации показывает, что гравитационные волны можно рассматривать как поток квантов - гравитонов.

Впервые квантовые представления были введены в 1900 году немецким физиком Планком в работе, посвященной теории теплового излучения. Существовавшая в то время теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к противоречию. Чтобы его разрешить, Планк предположил, что свет испускается не непрерывно (как это следовало из классической теории излучения), а определенными дискретными порциями энергии - квантами.

Эйнштейн в 1905 году построил теорию фотоэффекта, развивая квантовые представления Планка. Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, т.е. что дискретность присуща не только процессам испускания и поглощения света, но и самому свету, что свет состоит из отдельных порций - световых квантов.

Квант света, а более широко - электромагнитного излучения, называется фотоном. Этот термин ввел американский физико-химик Льюис в 1929 году.

Для создания современной картины мира важным событием оказалось то, что в 1922 году американский физик Комптон открыл эффект, в котором впервые во всей полноте проявились корпускулярные свойства электромагнитного излучения (в частности, света). Экспериментально было показано, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц.

Эффект Комптона выявил корпускулярные свойства света. Было экспериментально доказано, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции) свет обладает и корпускулярными свойствами: он состоит как бы из частиц. В этом проявляется дуализм света, его корпускулярно-волновая природа.

Возникло формальное логическое противоречие: для объяснения одних явлений надо было считать, что свет имеет волновую природу, для объяснения других - корпускулярную. Разрешение этого противоречия и привело к созданию физических основ квантовой механики.

В 1913 году Бор применил идею квантов к планетарной модели атома. Эта модель на основе классических представлений приводила к парадоксу - радиус орбиты электрона должен был постоянно уменьшаться из-за излучения и электрон должен был упасть на ядро. Для объяснения ус-

тойчивости атомов Бор предположил, что электрон испускает световые волны не постоянно, а лишь при переходе с одной орбиты, удовлетворяющей условиям квантования, на другую (тогда и рождается квант света).

Применение Бором квантовых идей к теории строения атома привело к построению "полуклассической" теории, которая встретилась со многими трудностями.

Модель атома Бора была построена за счет нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электромагнитной теории.

Теория Бора не могла объяснить, как движется электрон при переходе с одного уровня на другой.

Дальнейшая разработка вопросов теории атома привела к выводу, что движение электронов в атоме нельзя описывать в терминах классической механики (как движение по определенной траектории, орбите), что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электрона в атоме. Стало ясно, что для построения модели атома необходима принципиально новая теория, которая для описания поведения электрона в атоме не оперирует понятиями ньютоновской механики. В новую теорию могли входить только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1924 году французский физик Луи де Бройль, пытаясь найти объяснение постулированным в 1913 году Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно этой гипотезе, каждой частице, независимо от ее природы, надо поставить в соответствие волну, длина которой связана с импульсом частицы.

Т.е. не только фотоны, но и все "обыкновенные частицы" (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в дифракции частиц.

В 1927 году в эксперименте наблюдалась дифракция электронов, а позднее - дифракция и других частиц, тем самым справедливость гипотезы де Бройля была подтверждена экспериментально.

В 1926 году австрийский физик Шредингер предложил уравнение, описывающих поведение волн, соответствующих каждой частице (волн де Бройля), во внешних силовых полях. Это волновое уравнение, которое получило название уравнение Шредингера, является основным уравнением нерелятивистской квантовой механики, волновой механики.

В 1928 году Дираком было сформулировано релятивистское уравнение, описывающее движение электрона во внешнем силовом поле. Уравнение Дирака стало одним из основных уравнений релятивистской квантовой механики.

Немецкий физик В. Гейзенберг построил формальную схему, в которой вместо координат и скоростей электрона фигурировали некоторые абстрактные величины - матрицы.

Работа Гейзенберга была развита Борном и Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шредингера эквивалентность этих двух форм была доказана.

Окончательное формирование квантовой механики как последовательной теории связано с работой Гейзенберга 1927 года, в которой был сформулирован принцип, утверждающий, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Этот принцип получил название "соотношение неопределенностей".

Соотношение неопределенностей устанавливает, что понятия координаты и импульса в классическом смысле не могут быть применены к микроскопическим объектам. Никакой эксперимент не может привести к одновременно точному измерению входящих в соотношение неопределенностей динамических переменных. При этом неопределенность в измерениях связана не с несовершенством измерительной техники, а с объективными свойствами микромира.

Завершение построения аппарата квантовой механики породило острые дискуссии в отношении интерпретации этой теории, поскольку она существенно отличается от классических теорий.

Отличие квантовой механики от классических теорий

Важное отличие состоит в том, что в классических теориях описываются свойства объектов вне их отношения к тем приборам, с помощью которых обнаруживаются эти свойства, в то время как в квантовой механике учет условий наблюдения неотъемлем от самой теоретической постановки проблемы (при этом в различных макроскопических ситуациях микроявления обнаруживают различные, порой прямо противоположные свойства, например, частицы или волны).

Классическим теориям был свойственен «лапласовский детерминизм», названый в честь французского физика и математика Пьера Симона Лапласа. В своей работе «Опыт философии теории вероятности» (1814 г.) Лаплас предполагал, что досканально зная состояние системы в данный момент, можно с уверенностью предсказать ее будущее. Он считал, что Мир устроен таким образом, что для предсказания любых явлений в этом мире достаточно знать координаты и импульсы всех частиц во Вселенной, подставить их значения в математические уравнения и решить их.

Примерно 100 лет назад лапласовский детерминизм был основой мировоззрения ученых, базой научной рациональности вообще. Ученые стремились придавать результатам своей деятельности форму абсолют-

ной необходимости, т.е. абсолютного детерминизма. Открываемые в этот период законы получили название динамических законов.

Другим существенным отличием квантовой механики от классической, вызвавшим острые дискуссии, является ее принципиально вероятностный характер.

С позиций лапласовского детерминизма, ньютоновская механика с ее однозначными законами причины и следствия является каноном, идеалом научного знания вообще, всякой научной теории. Любая теория, с этой точки зрения, должна исчерпывающим образом описывать свойства реальности на базе строго однозначных законов, как это делает механика.

Активное применение теории вероятностей в физике, которое началось с середины XIX века, привело к появлению нового типа законов и теорий - статистических.

Важно подчеркнуть, что использование вероятностно-статистических методов в науке не противоречит концепции лапласовского детерминизма. На эмпирическом уровне объекты даны в единстве существенных и несущественных, случайных свойств, поэтому использование вероятностных представлений вполне обосновано. На теоретическом уровне использование вероятностей предполагало однозначную детерминированность тех индивидуальных явлений, которые в совокупности дают статистический закон.

С позиций лапласовского детерминизма, использование вероятностных представлений в науке вполне оправдано, но познавательный статус динамических и статистических теорий существенно различен. Статистические теории с этих позиций - это неподлинные теории; они могут быть практически очень полезны, но в познавательном плане они неполноценны, они дают лишь первое приближение к истине, и за каждой статистической теорией должна стоять теория, однозначно описывающая реальность. Одна из интерпретаций квантовой механики была построена с позиций лапласовского детерминизма.

Фактически такую интерпретацию развивали Эйнштейн, Шредингер и их сторонники, когда утверждали, что принципиально вероятностный характер квантовой механики говорит о ее неполноте как физической теории. Они ориентировали физиков на поиск такой теории микроявлений, которая по своей структуре и характеру законов была бы подобна классической механике или классической электродинамике. В этом русле строилась программа элиминации вероятностных представлений из теории микромира путем обнаружения "скрытых параметров", т.е. таких свойств элементарных частиц, знание которых позволило бы достичь их строго однозначного описания.

Против такой интерпретации квантовой механики выступили Борн и другие, кто видел в квантовой механике полноценную и полноправную физическую теорию.

Хотя дискуссии в отношении статуса вероятностных представлений в

современной физике не закончены до сих пор, тем не менее, развитие квантовой механики ослабляет позиции сторонников лапласовского детерминизма.

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Элементарные частицы, в первоначальном значении этого термина, - это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них по современным представлениям являются составными системами. Общее свойство этих систем заключается в том, что они не являются атомами или ядрами (исключение составляет протон). Поэтому иногда их называют субъядерными частицами. Частицы, претендующие на роль первичных элементов материи, иногда называют "истинно элементарные частицы". Первой открытой элементарной частицей был электрон. Его открыл английский физик Томсон в 1897 году.

Первой открытой античастицей был позитрон - частица с массой электрона, но положительным электрическим зарядом. Это античастица была обнаружена в составе космических лучей американским физиком Андерсеном в 1932 году.

В современном физике в группу элементарных относятся более 350 частиц, в основном нестабильных, и их число продолжает расти.

Если раньше элементарные частицы обычно обнаруживали в космических лучах, то с начала 50-х годов ускорители превратились в основной инструмент для исследования элементарных частиц.

Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения: квантовые закономерности являются определяющими в поведении элементарных частиц.

Наиболее важное квантовое свойство всех элементарных частиц - это способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания.

Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания.

В соответствии с различной интенсивностью протекания взаимодействия элементарных частиц феноменологически делят на несколько классов: сильное, электромагнитное и слабое. Кроме того, все элементарные частицы обладают гравитационным взаимодействием.

Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей по сравнению с другими процессами интенсивностью, и приводит к самой сильной связи элементарных частиц. Имен-

но оно обусловливает связь протонов и нейтронов в ядрах атомов.

Электромагнитное взаимодействие отличается от других участием электромагнитного поля. Электромагнитное поле (в квантовой физике - фотон) либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.

Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества и тем самым определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микросистем.

Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных частиц.

Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного.

Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из-за малости масс элементарных частиц.

Слабое взаимодействие гораздо сильнее гравитационного, но в повседневной жизни роль гравитационного взаимодействия гораздо заметнее роли слабого взаимодействия. Это происходит потому, что гравитационное взаимодействие (как, впрочем, и электромагнитное) имеет бесконечно большой радиус действия. Поэтому, например, на тела, находящиеся на поверхности Земли, действует гравитационное притяжение со стороны всех атомов, из которых состоит Земля. Слабое же взаимодействие обладает настолько малым радиусом действия, что он до сих пор не измерен.

В современной физике фундаментальную роль играет релятивистская квантовая теория физических систем с бесконечным числом степеней свободы - квантовая теория поля. Эта теория построена для описания одного из самых общих свойств микромира - универсальной взаимной превращаемости элементарных частиц. Для описания такого рода процессов требовался переход к квантовому волновому полю. Квантовая теория поля с необходимостью является релятивистской, поскольку если система состоит из медленно движущихся частиц, то их энергия оказаться недостаточной для образования новых частиц с ненулевой массой покоя. Частицы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т.е. всегда движутся со скоростью света.

Универсальный способ ведения всех взаимодействий, основанный на калибровочной симметрии, дает возможность их объединения.

Квантовая теория поля оказалась наиболее адекватным аппаратом для понимания природы взаимодействия элементарных частиц и объединения всех видов взаимодействий.

Квантовая электродинамика - та часть квантовой теории поля, в которой рассматривается взаимодействие электромагнитного поля и заряженных частиц (или электронно-позитронного поля).

В настоящее время квантовая электродинамика рассматривается как составная часть единой теории слабого и электромагнитного взаимодействий.

В зависимости от участия в тех или иных видах взаимодействия все изученные элементарные частицы, за исключением фотона, разбиваются на две основные группы - адроны и лептоны.

Адроны (от греч. - большой, сильный) - класс элементарных частиц, участвующих в сильном взаимодействии (наряду с электромагнитным и слабым). Лептоны (от греч. - тонкий, легкий) - класс элементарных частиц, необладающих сильным взаимодействием, участвующих только в электромагнитном и слабом взаимодействии (наличие гравитационного взаимодействия у всех элементарных частиц, включая фотон, подразумевается).

Группы элементарных частиц

Наиболее известные элементарные частицы - электрон, фотон, пи-мезоны, мюоны, лептоны и нейтрино.

1. Фотоны (кванты электромагнитного поля).

2. Лептоны (легкие частицы).

3. Бозоны (квазичастицы).

4. Кварки (самые микроскопические).

5. Адроны (большие, сильные частицы):

а) барионы (тяжелые) - комбинация из трех кварков;

б) мезоны (средние) - переносчики ядерных сил.

Основными характеристиками элементарных частиц являются масса, среднее время жизни, заряд, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отношению к массе покоя электрона. Некоторые элементарные частицы, например, фотоны не имеют массы покоя. Остальные частицы по этому признаку делятся на лептоны, мезоны, барионы.

По времени жизни частицы делятся на стабильные и нестабильные. К стабильным относят фотон, две разновидности нейтрино, электрон и протон. В структуре макротел стабильные частицы играют важнейшую роль. Остальные частицы нестабильны, они существуют около 10-10 - 10-24 с, после чего распадаются.

Элементарные частицы со средним временем жизни 10-23 - 10-22 с называют резонансами, которые распадаются еще до того, как успевают покинуть атом или атомное ядро.

Все элементарные частицы обладают электрическим зарядом: положительным, отрицательным либо нулевым. Почти каждой частице соответствует античастица с противоположным зарядом.

Состояние элементарных частиц выражается понятием «спина», или моментом движения микрочастицы.

В современной теории элементарных частиц концепция симметрии законов относительно некоторых преобразований является ведущей. «Если законы, устанавливающие соотношение между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определенных преобразованиях, которым может быть подвергнута система, то говорят, что эти законы обладают симметрией (или инвариантны) относительно данных преобразований». Симметрия рассматривается как фактор, определяющий существование различных групп и семейств элементарных частиц.

Для класса внутренних симметрий уравнений теории поля (т.е. симметрий, связанных со свойствами элементарных частиц, а не со свойствами пространства-времени) применяется общее название - калибровочная симметрия.

Калибровочная симметрия приводит к необходимости существования векторных калибровочных полей, обмен квантами которых обуславливает взаимодействия частиц. Идея калибровочной симметрии оказалась наиболее плодотворной в единой теории слабого и электромагнитного взаимодействий.

Интересной проблемой квантовой теории поля является включение в единую калибровочную схему и сильного взаимодействия ("великое объединение").

Другим перспективным направлением объединения считается суперкалибровочная симметрия, или просто суперсимметрия.

В 60-х годах американскими физиками С. Вайнбергом, Ш. Глэшоу, пакистанским физиком А. Саламом и др. была создана единая теория слабого и электромагнитного взаимодействий, позднее получившая название стандартной теории электрослабого взаимодействия. В этой теории наряду с фотоном, осуществляющим электромагнитное взаимодействие, появляются промежуточные векторные бозоны - частицы, переносящие слабое взаимодействие. Это частицы были экспериментально обнаружены в 1983 году.

Открытие на опыте промежуточных векторных бозонов подтверждает правильность основной (калибровочной) идеи стандартной теории электрослабого взаимодействия.

В основе "Великого объединений" лежит тот факт, что при переходе к малым расстояниям (т.е. к высоким энергиям) увеличивается константа электрослабого взаимодействия и уменьшается константа сильного взаимодействия. Экстраполяция такой тенденции на сверхвысокие энергии приводит к равенству констант всех трех взаимодействий при некотором энергетическом масштабе, при котором происходит спонтанное наруше-

ние симметрии "великого объединения", приводящее к возникновению масс у космических объектов.

В разных моделях "великого объединения" предсказывается различная величина энергетического масштаба, но в любом случае такие энергии недостижимы в обозримом будущем ни на ускорителях, ни в космических лучах. Для проверки моделей "Великого объединения" могут использоваться либо их предсказания в низкоэнергетической области, либо космологические следствия этих моделей (по современным представлениям, на очень ранних стадиях расширения Вселенной могли достигаться температуры много большие, чем энергетический масштаб "Великого объединения").

Одним из предсказаний моделей "Великого объединения" является несохранение барионного заряда и, как следствие, нестабильность протона.

Супергравитация - калибровочная теория суперсимметрии, представляющая собой суперсимметричное обобщение общей теории относительности (теории тяготения).

Расширенная теория супергравитации обладает симметрией, в принципе позволяющей объединить все известные виды взаимодействий - гравитационное, слабое, электромагнитное и сильное. Однако имеющиеся модели пока далеки от реальной действительности (в частности, в них нет места некоторым фундаментальным частицам).

Таким образом, современная физика пришла к выводу, что все четыре фундаментальных взаимодействия необходимы для создания из элементарных частиц сложного и разнообразного материального мира, получаемого из одного фундаментального взаимодействия - супкрсилы. Доказательством является факт объединения электромагнитного и слабого взаимодействия при эн







Дата добавления: 2015-10-15; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия