Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые характеристики случайных величин.





Случайные величины помимо законов распределения, могут также описываться числовыми характеристиками, среди которых различают характеристики положения (математическое ожидание, мода, медиана и др.) и характеристики рассеяния (дисперсия, среднеквадратичное отклонение, различные моменты распределения порядка выше первого и др.)

Математическим ожиданием (средним значением по распределению) называется действительное число, определяемое в зависимости от типа случайной величины X формулой

Вероятностный смысл математического ожидания таков: математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Если производятся независимые испытания, в каждом из которых вероятность появления события постоянна и равна , то математическое ожидание числа появления события равно:

Задача 1. Бросаются две симметричные игральные кости. Х - сумма очков на двух костях. Найти математическое ожидание суммы очков на двух костях.

Решение: Обозначим - количество очков на первой кости - количество очков на второй кости, тогда , причем и - независимые случайные величины.

Вероятность каждого события равна Составим таблицу:

у/z              
               
               
               
               
               
               
х                      
P  
                                     

 

Отклонением называют разность между случайной величиной и её математическим ожиданием:

 
 

Определение. Дисперсией случайной величины называется неотрицательное число , определяемое формулой

 

Определение. Средним квадратическим отклонением называют т.е. .

Вероятностный смысл дисперсии. Дисперсия характеризует разброс (рассеяние) значений случайной величины.

Если производятся независимые испытания, в каждом из которых вероятность появления события постоянна и равна , то дисперсия числа появления события равна:

 

, где .

Для распределения Пуассона характерной особенностью является совпадение математического ожидания и дисперсии, причем

Задача 2. Дана плотность распределения случайной величины . Найти параметр , математическое ожидание , дисперсию , функцию распределения случайной величины , вероятность выполнения неравенства .

Решение:

Функция плотности обладает свойством:

При начальных условиях и , функция примет вид:

Зная можно для непрерывной случайной величины найти и по формулам:

 

По формуле определим функцию распределения случайной величины :

зная которую, найдем вероятность неравенства

Ответ:







Дата добавления: 2015-10-15; просмотров: 512. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия