Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение





1. Сборник индивидуальных заданий по высшей математике ч.1-3. Под редакцией Рябушко А.П. Минск: Вышейшая школа, 2001г.

2. Высшая математика в упражнениях и задачах. Ч.1,2 Данко П.Е., Попов А.Г., Кожевников Т.Я. М.: Высшая школа,1986 г.

3. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа. Под редакцией Ефимова А.В., Демидовича Б.П. М.: Наука, 1986г.

4. Кузнецов Л.А.Сборник заданий по высшей математике (типовые расчеты). М.: Высшая школа, 1983 г.

 

Практическое занятие 4 -2 часа

Линейные дифференциальные уравнения. Дифференциальное уравнение Бернулли. Уравнение в полных дифференциалах

Линейное уравнение

Определение. Уравнение (1)

линейное относительно неизвестной функции у и ее производной (а также любое уравнение, с помощью алгебраических преобразований приводящееся к виду (3)), называется неоднородным линейным дифференциальным уравнением первого порядка.

Функции P(x)≠0, Q(x)≠0 должны быть непрерывными в некоторой области. Общее решение уравнения (2.1) всегда можно записать в виде

(2)

где С- произвольная постоянная.

Если в уравнении (1) (или , то получим дифференциальные уравнение с разделяющимися переменными, общее решение которых определяется из уравнения (1) при Q(x)≡0 или Р(х)≡0 соответственно. В случае, когда Q(x)≡0, уравнение (1) называют однородным линейным дифференциальным уравнением.

Пример 2. Найти общее решение уравнения Решить задачу Коши при начальном условии у(-2)=2.

►Приведем данное уравнение к виду (1), разделив обе его части на Получим:

 

Здесь







Дата добавления: 2015-10-15; просмотров: 337. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия