Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение





1. Сборник индивидуальных заданий по высшей математике ч.1-3. Под редакцией Рябушко А.П. Минск: Вышейшая школа, 2001г.

2. Высшая математика в упражнениях и задачах. Ч.1,2 Данко П.Е., Попов А.Г., Кожевников Т.Я. М.: Высшая школа,1986 г.

3. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа. Под редакцией Ефимова А.В., Демидовича Б.П. М.: Наука, 1986г.

4. Кузнецов Л.А.Сборник заданий по высшей математике (типовые расчеты). М.: Высшая школа, 1983 г.

 

Практическое занятие 4 -2 часа

Линейные дифференциальные уравнения. Дифференциальное уравнение Бернулли. Уравнение в полных дифференциалах

Линейное уравнение

Определение. Уравнение (1)

линейное относительно неизвестной функции у и ее производной (а также любое уравнение, с помощью алгебраических преобразований приводящееся к виду (3)), называется неоднородным линейным дифференциальным уравнением первого порядка.

Функции P(x)≠0, Q(x)≠0 должны быть непрерывными в некоторой области. Общее решение уравнения (2.1) всегда можно записать в виде

(2)

где С- произвольная постоянная.

Если в уравнении (1) (или , то получим дифференциальные уравнение с разделяющимися переменными, общее решение которых определяется из уравнения (1) при Q(x)≡0 или Р(х)≡0 соответственно. В случае, когда Q(x)≡0, уравнение (1) называют однородным линейным дифференциальным уравнением.

Пример 2. Найти общее решение уравнения Решить задачу Коши при начальном условии у(-2)=2.

►Приведем данное уравнение к виду (1), разделив обе его части на Получим:

 

Здесь







Дата добавления: 2015-10-15; просмотров: 337. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия