Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейное уравнение





1. Сборник индивидуальных заданий по высшей математике ч.1-3. Под редакцией Рябушко А.П. Минск: Вышейшая школа, 2001г.

2. Высшая математика в упражнениях и задачах. Ч.1,2 Данко П.Е., Попов А.Г., Кожевников Т.Я. М.: Высшая школа,1986 г.

3. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа. Под редакцией Ефимова А.В., Демидовича Б.П. М.: Наука, 1986г.

4. Кузнецов Л.А.Сборник заданий по высшей математике (типовые расчеты). М.: Высшая школа, 1983 г.

 

Практическое занятие 4 -2 часа

Линейные дифференциальные уравнения. Дифференциальное уравнение Бернулли. Уравнение в полных дифференциалах

Линейное уравнение

Определение. Уравнение (1)

линейное относительно неизвестной функции у и ее производной (а также любое уравнение, с помощью алгебраических преобразований приводящееся к виду (3)), называется неоднородным линейным дифференциальным уравнением первого порядка.

Функции P(x)≠0, Q(x)≠0 должны быть непрерывными в некоторой области. Общее решение уравнения (2.1) всегда можно записать в виде

(2)

где С- произвольная постоянная.

Если в уравнении (1) (или , то получим дифференциальные уравнение с разделяющимися переменными, общее решение которых определяется из уравнения (1) при Q(x)≡0 или Р(х)≡0 соответственно. В случае, когда Q(x)≡0, уравнение (1) называют однородным линейным дифференциальным уравнением.

Пример 2. Найти общее решение уравнения Решить задачу Коши при начальном условии у(-2)=2.

►Приведем данное уравнение к виду (1), разделив обе его части на Получим:

 

Здесь







Дата добавления: 2015-10-15; просмотров: 337. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия