Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общее решение исходного уравнения в соответствии с формулой (2) имеет вид





(3)

Найдем входящие в это решение интегралы. Имеем

где знаки появляются в силу равенства Подставляя

найденные интегралы в решение (3), окончательно получаем общее решение исходного уравнения:

Из него выделяем частное решение, соответствующее начальному условию у(-2)=2:

Полезно иметь в виду, что иногда дифференциальное уравнение является линейным относительно х как функции у, т.е. может быть приведено к виду

(4)

Его общее решение находится по формуле

(5)

Пример 3. Найти общий интеграл уравнения

►Данное уравнение является линейным относительно функции х(у). Действительно,

т.е. получили уравнение вида (4). Согласно формуле (5), общее решение исходного уравнения имеет вид

Отметим, что линейное дифференциальное уравнение (1) можно также проинтегрировать методом Бернулли, суть которого заключается в следующем. Введем две неизвестные функции u(x) и v(x) по формуле y=u(x)v(x) (подстановка Бернулли). Тогда Подставим выражение для и в уравнение (1), получим уравнение которое преобразуем к виду

Пример 4. Проинтегрировать уравнение

методом Бернулли и решить задачу Коши при начальном условии .

►Сделав подстановку Бернулли получим:

Находим частное решение уравнения

Пологая выбираем решение Далее ищем общее решение уравнение Имеем:

Общее решение исходного уравнения

Из него выделяем частное решение, удовлетворяющее начальному условию: Подставляя значение С=-1 в общее решение, окончательно получим:

 







Дата добавления: 2015-10-15; просмотров: 349. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия