Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общее решение исходного уравнения в соответствии с формулой (2) имеет вид





(3)

Найдем входящие в это решение интегралы. Имеем

где знаки появляются в силу равенства Подставляя

найденные интегралы в решение (3), окончательно получаем общее решение исходного уравнения:

Из него выделяем частное решение, соответствующее начальному условию у(-2)=2:

Полезно иметь в виду, что иногда дифференциальное уравнение является линейным относительно х как функции у, т.е. может быть приведено к виду

(4)

Его общее решение находится по формуле

(5)

Пример 3. Найти общий интеграл уравнения

►Данное уравнение является линейным относительно функции х(у). Действительно,

т.е. получили уравнение вида (4). Согласно формуле (5), общее решение исходного уравнения имеет вид

Отметим, что линейное дифференциальное уравнение (1) можно также проинтегрировать методом Бернулли, суть которого заключается в следующем. Введем две неизвестные функции u(x) и v(x) по формуле y=u(x)v(x) (подстановка Бернулли). Тогда Подставим выражение для и в уравнение (1), получим уравнение которое преобразуем к виду

Пример 4. Проинтегрировать уравнение

методом Бернулли и решить задачу Коши при начальном условии .

►Сделав подстановку Бернулли получим:

Находим частное решение уравнения

Пологая выбираем решение Далее ищем общее решение уравнение Имеем:

Общее решение исходного уравнения

Из него выделяем частное решение, удовлетворяющее начальному условию: Подставляя значение С=-1 в общее решение, окончательно получим:

 







Дата добавления: 2015-10-15; просмотров: 349. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия