Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общее решение исходного уравнения в соответствии с формулой (2) имеет вид





(3)

Найдем входящие в это решение интегралы. Имеем

где знаки появляются в силу равенства Подставляя

найденные интегралы в решение (3), окончательно получаем общее решение исходного уравнения:

Из него выделяем частное решение, соответствующее начальному условию у(-2)=2:

Полезно иметь в виду, что иногда дифференциальное уравнение является линейным относительно х как функции у, т.е. может быть приведено к виду

(4)

Его общее решение находится по формуле

(5)

Пример 3. Найти общий интеграл уравнения

►Данное уравнение является линейным относительно функции х(у). Действительно,

т.е. получили уравнение вида (4). Согласно формуле (5), общее решение исходного уравнения имеет вид

Отметим, что линейное дифференциальное уравнение (1) можно также проинтегрировать методом Бернулли, суть которого заключается в следующем. Введем две неизвестные функции u(x) и v(x) по формуле y=u(x)v(x) (подстановка Бернулли). Тогда Подставим выражение для и в уравнение (1), получим уравнение которое преобразуем к виду

Пример 4. Проинтегрировать уравнение

методом Бернулли и решить задачу Коши при начальном условии .

►Сделав подстановку Бернулли получим:

Находим частное решение уравнения

Пологая выбираем решение Далее ищем общее решение уравнение Имеем:

Общее решение исходного уравнения

Из него выделяем частное решение, удовлетворяющее начальному условию: Подставляя значение С=-1 в общее решение, окончательно получим:

 







Дата добавления: 2015-10-15; просмотров: 349. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия