Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение векторов





Векторным произведением векторов и называется третий вектор (рис. 1.19), если верны следующие условия:

1. ;

2. ^ и ^ ;

3. , , образуют правую тройку.

Обозначается векторное произведение: ´ .

Векторное произведение векторов не коммутативно, т. е. нельзя переставлять сомножители векторного произведения.

Пример 1.20. Вычислите векторное произведение векторов и .

Решение. Векторное произведение векторов вычисляется по формуле: , где , , – базисные вектора (орты), – координаты вектора , – координаты вектора .

В задаче (–1, 7, 3), (1, 8, –2), значит . Вычислим определитель: = = . Таким образом, = .

Ответ: (–38, 1, –15).

Пример 1.21. Найдите площадь параллелограмма, построенного на векторах и , как на сторонах.

Решение. Модуль векторного произведения векторов численно равен площади параллелограмма, построенного на этих векторах, как на сторонах. Действительно, , а правая часть этого равенства есть формула площади параллелограмма, построенного на этих векторах, как на сторонах (рис. 1.19). Следовательно, искомая площадь S = .

В задаче (1, –1, 2), (2, –3, –1), значит . Вычислим определитель: = = .

Таким образом, = . Найдем модуль полученного векторного произведения: = = . Т. е. площадь параллелограмма равна масштабных единиц в квадрате.

Ответ: S = кв. ед.

Пример 1.22. Зная векторы, образующие треугольник ABC: , , , найти длину высоты этого треугольника, опущенной из точки В.

Решение. Для нахождения длины высоты воспользуемся формулами площади треугольника. С одной стороны площадь треугольника равна половине произведения основания на высоту S = (рис. 1.20), а с другой – половине площади параллелограмма, построенного на векторах, как на сторонах, т. е. половине модуля векторного произведения S = .

Вычислим = = = .

Найдем модуль полученного векторного произведения: = = = = . Т. е. площадь треугольника ABC равна масштабных единиц в квадрате, S = .

Найдем длину стороны АС, она равна модулю соответствующего вектора: . Тогда (ед.)

Ответ: .







Дата добавления: 2015-10-12; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия