Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 4. 11.1 Метод частного интегрирования





11.1 Метод частного интегрирования

 

11.1.1. Представление неопределенного интеграла как обратного оператора для дифференцирования функции

 

Любой известной функции от одного переменного можно сопоставить её производную, равную пределу

. (11.1)

Значение производной является новой функцией, которую обозначим следующим образом

(11.2)

Можно сформулировать обратную задачу: по заданной функции найти такую функцию , которая удовлетворяет уравнению (11.2). Последняя функция в математическом анализе называется первообразной исходной функции . Умножая уравнение (11.2) на дифференциал аргумента получим эквивалентную форму этого дифференциального уравнения как равенство бесконечно малых величин первого порядка

(11.3)

Введем оператор интеграла как обратное к дифференциалу действие на функцию

(11.4)

Можно написать символическое уравнение для взаимно обратных и перестановочных операторов интегрирования и дифференцирования

(11.5)

Умножая (11.3) на оператор интегрирования получаем соотношение

(11.6)

Последнее слагаемое, равное произвольной постоянной, при дифференцировании этого соотношения исчезает. Оно известно как константа интегрирования. Подстановка (11.6) превращает (11.3) в тождество и поэтому она является общим решением дифференциального уравнения (11.3). Здесь «дифференциальным» называем уравнение, содержащее символы дифференцирования неизвестной функции. Покажем, что (11.6) удовлетворяет уравнению (11.2)

(11.7)

Отсюда следует, что оператор полной производной и неопределенный интеграл от функции взаимно обратны

(11.8)

Символические вычисления позволяет доказать перестановочность этих двух операций

(11.9)

Литература

1. Алексеев А.Н. Сборник задач по классической электродинамике. М.: Наука, 1977.
Оглавление

§1. Основы реперкого формализма в декартовой системе координат

§2. Натуральный репер, присоединенный к криволинейной системе координат

§3. Метрический тензор и коэффициенты Ламе

§4. Конструирование основных типов векторных интегралов

§5. Два основных свойства криволинейных, поверхностных и объемных интегралов

§6. Определение напряженности и потенциала электростатического поля для сферически симметричного распределения зарядов

§7. Цилиндрически-симметричное распределение зарядов

§8. Электростатическое поле распределения зарядов с симметрией плоскости

§9. Применение дельта-функции Дирака и ступенчатой функции для описания распределения объемной плотности тока

§10. Закон Био-Савара

Глава 4







Дата добавления: 2015-10-12; просмотров: 539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия