Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 4. 11.1 Метод частного интегрирования





11.1 Метод частного интегрирования

 

11.1.1. Представление неопределенного интеграла как обратного оператора для дифференцирования функции

 

Любой известной функции от одного переменного можно сопоставить её производную, равную пределу

. (11.1)

Значение производной является новой функцией, которую обозначим следующим образом

(11.2)

Можно сформулировать обратную задачу: по заданной функции найти такую функцию , которая удовлетворяет уравнению (11.2). Последняя функция в математическом анализе называется первообразной исходной функции . Умножая уравнение (11.2) на дифференциал аргумента получим эквивалентную форму этого дифференциального уравнения как равенство бесконечно малых величин первого порядка

(11.3)

Введем оператор интеграла как обратное к дифференциалу действие на функцию

(11.4)

Можно написать символическое уравнение для взаимно обратных и перестановочных операторов интегрирования и дифференцирования

(11.5)

Умножая (11.3) на оператор интегрирования получаем соотношение

(11.6)

Последнее слагаемое, равное произвольной постоянной, при дифференцировании этого соотношения исчезает. Оно известно как константа интегрирования. Подстановка (11.6) превращает (11.3) в тождество и поэтому она является общим решением дифференциального уравнения (11.3). Здесь «дифференциальным» называем уравнение, содержащее символы дифференцирования неизвестной функции. Покажем, что (11.6) удовлетворяет уравнению (11.2)

(11.7)

Отсюда следует, что оператор полной производной и неопределенный интеграл от функции взаимно обратны

(11.8)

Символические вычисления позволяет доказать перестановочность этих двух операций

(11.9)

Литература

1. Алексеев А.Н. Сборник задач по классической электродинамике. М.: Наука, 1977.
Оглавление

§1. Основы реперкого формализма в декартовой системе координат

§2. Натуральный репер, присоединенный к криволинейной системе координат

§3. Метрический тензор и коэффициенты Ламе

§4. Конструирование основных типов векторных интегралов

§5. Два основных свойства криволинейных, поверхностных и объемных интегралов

§6. Определение напряженности и потенциала электростатического поля для сферически симметричного распределения зарядов

§7. Цилиндрически-симметричное распределение зарядов

§8. Электростатическое поле распределения зарядов с симметрией плоскости

§9. Применение дельта-функции Дирака и ступенчатой функции для описания распределения объемной плотности тока

§10. Закон Био-Савара

Глава 4







Дата добавления: 2015-10-12; просмотров: 539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия