Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 4. 11.1 Метод частного интегрирования





11.1 Метод частного интегрирования

 

11.1.1. Представление неопределенного интеграла как обратного оператора для дифференцирования функции

 

Любой известной функции от одного переменного можно сопоставить её производную, равную пределу

. (11.1)

Значение производной является новой функцией, которую обозначим следующим образом

(11.2)

Можно сформулировать обратную задачу: по заданной функции найти такую функцию , которая удовлетворяет уравнению (11.2). Последняя функция в математическом анализе называется первообразной исходной функции . Умножая уравнение (11.2) на дифференциал аргумента получим эквивалентную форму этого дифференциального уравнения как равенство бесконечно малых величин первого порядка

(11.3)

Введем оператор интеграла как обратное к дифференциалу действие на функцию

(11.4)

Можно написать символическое уравнение для взаимно обратных и перестановочных операторов интегрирования и дифференцирования

(11.5)

Умножая (11.3) на оператор интегрирования получаем соотношение

(11.6)

Последнее слагаемое, равное произвольной постоянной, при дифференцировании этого соотношения исчезает. Оно известно как константа интегрирования. Подстановка (11.6) превращает (11.3) в тождество и поэтому она является общим решением дифференциального уравнения (11.3). Здесь «дифференциальным» называем уравнение, содержащее символы дифференцирования неизвестной функции. Покажем, что (11.6) удовлетворяет уравнению (11.2)

(11.7)

Отсюда следует, что оператор полной производной и неопределенный интеграл от функции взаимно обратны

(11.8)

Символические вычисления позволяет доказать перестановочность этих двух операций

(11.9)

Литература

1. Алексеев А.Н. Сборник задач по классической электродинамике. М.: Наука, 1977.
Оглавление

§1. Основы реперкого формализма в декартовой системе координат

§2. Натуральный репер, присоединенный к криволинейной системе координат

§3. Метрический тензор и коэффициенты Ламе

§4. Конструирование основных типов векторных интегралов

§5. Два основных свойства криволинейных, поверхностных и объемных интегралов

§6. Определение напряженности и потенциала электростатического поля для сферически симметричного распределения зарядов

§7. Цилиндрически-симметричное распределение зарядов

§8. Электростатическое поле распределения зарядов с симметрией плоскости

§9. Применение дельта-функции Дирака и ступенчатой функции для описания распределения объемной плотности тока

§10. Закон Био-Савара

Глава 4







Дата добавления: 2015-10-12; просмотров: 539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия