![]() Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Правило розкриття дужокДата добавления: 2014-11-10; просмотров: 1634
Якщо перед дужками стоїть знак «+», то розкриваючи дужки, потрібно зберегти знак кожного доданка суми, взятої в дужки. Якщо перед дужками стоїть знак «-«, то, розкриваючи дужки, потрібно знаки доданків змінити на протилежні. Наприклад, Щоб помножити многочлен на многочлен, треба кожний член першого многочлена помножити на кожний член другого і отримані добутки додати. При множенні виразів потрібно пам’ятати правила знаків, а саме: 52.Зведіть вирази до многочленів стандартного виду: 1) 3) 5) 7) 9) ● 53Для перетворення (спрощення) алгебраїчних виразів застосовують формули скороченого множення: . Ці формули можна застосовувати, читаючи їх як зліва направо, так і навпаки – справа наліво. 54.Перетворити на многочлени стандартного виду наступні вирази: 1) 3) 5) 7) 9) ● 55.Розкладанням многочлена на множники називається перетворення многочлена в добуток двох або декількох многочленів, серед яких можуть бути й одночлени. Існує чотири основних способи розкладання многочлена на множники. Перший спосіб. Винесення спільного множника за дужки. Наприклад,
Другий спосіб. Спосіб групування, який полягає у поєднанні в групи тих членів, які мають спільні множники, і винесенні за дужки спільного множника кожної з груп. Якщо після такого перетворення виявиться спільний множник у всіх утворених груп, то його виносять за дужки. Наприклад,
Третій спосіб. Застосування формул скороченого множення. Наприклад,
Четвертий спосіб. Розкладання квадратного тричлена на множники, якщо відомі його корені. Забігаючи наперед, зазначимо, що якщо квадратний тричлен 56.Розкласти многочлени на множники: 1) 3) 5) 7) 9) ● 57.Цілими раціональними виразами називаються всі числові вирази, а також вирази зі змінними, які можуть містити дії додавання, віднімання, піднесення до натурального степеня. Дробовими раціональними виразами (дробово-раціональними виразами) називаються вирази зі змінними, які містити дії додавання, віднімання, множення, піднесення до натурального степеня і ділення на вирази зі змінними.
Раціональним (алгебраїчним) дробом називається вираз Скоротити раціональний дріб – це значить поділити чисельник і знаменник дробу на спільний множник. Можливість подібного скорочення обумовлена основною властивістю дробу. Для того щоб скоротити раціональний дріб, потрібно спробувати розкласти на множники його чисельник і знаменник. Якщо чисельник і знаменник мають спільні множники, то дріб можна скоротити. Якщо спільних множників немає, то перетворення дробу за допомогою скорочення неможливо. Наприклад, скоротимо дріб: Спільним знаменником двох або декількох раціональних дробів називається цілий раціональний вираз, який ділиться на знаменник кожного дробу. Для того щоб кілька раціональних дробів звести до спільного знаменника, необхідно: 1) розкласти знаменник кожного дробу на множники, якщо це можливо; 2) скласти найменший спільний знаменник, включивши до нього як співмножники всі різноманітні множники, отримані в пункті 1); якщо деякий множник є в кількох розкладеннях, то він береться з показником степеня, що дорівнює найбільшому з наявних; 3) визначити додаткові множники для кожного з дробів, для чого спільний знаменник поділити на знаменник кожного дробу; 4) помножити чисельник і знаменник кожного дробу на додатковий множник. Сума (різниця) двох раціональних дробів з однаковими знаменниками тотожно дорівнює дробу з тим же знаменником і з чисельником, що дорівнює сумі (різниці) чисельників початкових дробів: При додаванні (або відніманні) раціональних дробів з різними знаменниками потрібно звести дроби до спільного знаменника і виконати додавання (або віднімання) дробів із спільним знаменником. Добуток двох раціональних дробів тотожно дорівнює дробу, чисельник якого дорівнює добутку чисельників, а знаменник – добутку знаменників дробів, що перемножуються:
Частка від ділення двох раціональних дробів тотожно дорівнює дробу, чисельник якого дорівнює добутку чисельника першого дробу і знаменника другого дробу, а знаменник – добутку знаменника першого дробу і чисельника другого дробу: 58.Скоротіть дробі: 1) 3) 5) 7) 59.Виконайте дії з раціональними дробами: 1) 3) 5) 7) 60.Спростить вирази: 1) 3) 5) До змiсту
|