Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскости общего положения





Плоскости не параллельные и не перпендикулярные ни одной из плоскостей проекций называются плоскостями общего положения. Такие плоскости изображены на рис. 2.14а, б, в, г, д.

 

Плоскости частного положения

К плоскостям частного положения относятся плоскости, перпендикулярные плоскостям проекций – проецирующие плоскости.

Такая плоскость проецируется в прямую линию на ту плоскость проекций, к которой она перпендикулярна. На этой прямой лежат проекции всех точек, линий и фигур, принадлежащих данной проецирующей плоскости (Рис.2.21а, б).

Проецирующая плоскость вполне определяется той своей проекцией, на которой она проецируется в линию (Рис.2.22а, б, в).

Рис. 2.21. Проецирующая плоскость:

А) в диметрии; б) на эпюре

Рис. 2.22 Проецирующие плоскости

Плоскости, параллельные плоскостям проекций (дважды проецирующие), называются плоскостями уровня (Рис.2.23а, б, в).

Рис. 2.23. Плоскости уровня

 

Все точки, лежащие в этих плоскостях, одинаково отстоят от соответствующей плоскости проекций. Любая плоская фигура, расположенная в плоскости уровня, проецируется на параллельную ей плоскость проекций без искажения, т.е. в натуральную величину.

 







Дата добавления: 2014-12-06; просмотров: 1072. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия