Прямые частного положения
К прямым частного положения относятся линии уровня – прямые, параллельные одной из плоскостей проекций, и проецирующие линии – прямые, перпендикулярные к одной из плоскостей проекций. У куба с вырезом (Рис.2.4) линии, расположенные в гранях куба, параллельны плоскостям проекций будут линиями уровня. Линия, параллельная горизонтальной плоскости проекций, называется горизонталью и на эпюре обозначается буквой h. Линия, параллельная фронтальной плоскости проекций, называется фронталью и обозначается буквой f. Линия, параллельная профильной плоскости проекций, называется профильной прямой и обозначается буквой р. Ребра куба, стоящего на плоскости Н так, как это показано на рис. 2.4, параллельны двум плоскостям проекций и перпендикулярны третьей. Их направление совпадает с направлением проецирующих прямых при прямоугольном проецировании. В зависимости от перпендикулярности к той или иной плоскости проекций, прямые называются: Рис 2.4 Прямые частного положения
· линия, перпендикулярная горизонтальной плоскости проекций Н, называется – горизонтально проецирующей прямой (прямая d); · линия, перпендикулярная фронтальной плоскости проекций V, называется фронтально проецирующей прямой (прямая в); · линия, перпендикулярная профильной плоскости проекций W, называется профильно проецирующей прямой (прямая с). На рис.2.5 даны возможные положения прямых в системе плоскостей проекций в наглядном изображении и на эпюре. Фронтальная проекция горизонтали параллельна оси проекции Х, а на горизонтальной плоскости проекций она изображается в натуральную величину. На горизонтальной же проекции угол наклона горизонтали к фронтальной плоскости проекций изображается в натуральную величину. Аналогичны рассуждения относительно фронтали и профильной прямой. Угол между прямой и плоскостью определяется углом между прямой и ее проекцией на эту плоскость. Угол наклона прямой к горизонтальной плоскости проекций обозначается - a, к фронтальной - b, к профильной - . Рис 2.5 Проекция прямой частного положения
|