Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ортогональные проекции точки





 

Прямоугольные проекции на две или три взаимно перпендикулярные плоскости принято называть ортогональными.

Зададим три взаимно перпендикулярные плоскости проекций и точку А в пространстве (Рис.2.1).

Рис. 2.1. Ортогональные проекции точки

V, H, W – плоскости проекций

Vфронтальная плоскость проекций

Hгоризонтальная плоскость проекций

Wпрофильная плоскость проекций

Линии пересечения плоскостей проекций X, Y, Z – оси проекций.

Для того, чтобы получить три проекции точки А, следует из нее опустить перпендикуляры на плоскости проекций. Точки пересечения перпендикуляров с плоскостью Vфронтальная проекция точки Av, с плоскостью Нгоризонтальная проекция точки Ан, с плоскостью Wпрофильная проекция точки Аw.

Для перехода к плоскому чертежу, эпюру (от французского слова epure – чертеж, проект) нужно плоскость Н повернуть вниз вокруг оси Х до совмещения с плоскостью V, а плоскость W совместить с плоскостью V, поворачивая ее вокруг оси Z вправо (Рис.2.2а).

Две ортогональные проекции на взаимно перпендикулярные плоскости лежат на прямых, перпендикулярных к соответствующей оси проекции и пересекают эту ось в одной и той же точке. Эти линии называются линиями связи.

Расстояние от точки до плоскостей проекций называются координатами этой точки и могут быть измерены по осям.

1) Расстояние ААw (ХА) от профильной плоскости проекций является абсциссой точки А;

2) Расстояние ААv () точки А от фронтальной плоскости проекций называется ординатой (на рис.2.1 размер оси Y уменьшен в два раза, т.к. во фронтальной диметрии показатель искажения равен 0, 5);

3) Расстояние ААн () точки А от горизонтальной плоскости проекций называется аппликатой точки А.

Точка может быть задана ее координатами X, Y, Z, например,

А (, , )

Чертеж, на котором точка или система точек изображаются при совмещенном положении плоскостей проекций называется эпюром или чертежом.

Границы плоскостей проекций на эпюре обычно не показываются. Во многих случаях бывает достаточно двух плоскостей проекций, в этом случае проводится только одна ось проекции Х (Рис.2.2б).

 







Дата добавления: 2014-12-06; просмотров: 844. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия