Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 4. СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА





 

 

Решение позиционных и метрических задач значительно упрощается при преобразовании чертежа так, чтобы заданные геометрические объекты оказались в наиболее удобном – частном положении относительно плоскостей проекций. Это достигается либо способом замены плоскостей проекций, либо способом вращения.

 

Способ замены плоскостей проекций

 

Сущность этого способа заключается в том, что рассматриваемый геометрический объект не изменяет своего положения в пространстве, а заменяется одна из плоскостей проекций, при этом соблюдаются следующие условия: новая плоскость должна быть перпендикулярна к оставшейся (незаменяемой) плоскости проекций; положение новой плоскости (новой оси) выбирается в зависимости от условий задачи; линии связи в новой системе проекции перпендикулярны новой оси; расстояния новых проекций от новой оси равны расстояниям от заменяемых проекций до старой оси.

 

Преобразование чертежа точки и прямой

Рассмотрим сущность преобразования чертежа способом замены плоскостей проекций на примере чертежа точки. Пусть в системе плоскостей проекций V / H задана точка А на (рис.4.1).

 

Рис. 4.1. Преобразование чертежа точки в диметрии

Рис 4.2. Преобразование чертежа точки на эпюре

 

Заменим плоскость V на V1 перпендикулярную к плоскости Н и под некоторым произвольным углом к плоскости V. Горизонтальная плоскость проекций не меняет своего положения, т.е. осуществляется переход от системы X ( V/H) к новой X1 (V1/H). Плоскость V1 пересекается с плоскостью H по прямой Х1, которая определяет новую ось проекций. Проекция AH остается без изменений, так как точка А и плоскость Н не меняли своего положения в пространстве. Для нахождения новой фронтальной проекции точки AV1, достаточно спроецировать ортогонально точку А на плоскость V1. На рис.4.1 видно, что расстояние новой фронтальной проекции AV1 точки А от новой оси Х1 равно расстоянию от старой фронтальной проекции AV до старой оси Х: | AV AХ | = | AV1 AХ1 |.

На рис.4.2 осуществлено совмещение плоскости V1 с H вращением относительно оси X1.

Задача: Преобразовать горизонталь АВ во фронтально проецирующую прямую. (рис.4.3).

Рис 4.3. Преобразование чертежа прямой

Решение. Новая плоскость V1 перпендикулярна плоскости H и АНВН. Расстояния от точек АV1 и ВV1 до новой оси Х1 на плоскости V1 равно расстоянию от точек АV и ВV до старой оси Х.

Задача: Определить натуральную величину и угол наклона отрезка АВ прямой общего положения к плоскости H и V. (рис.4.4а, б).

Рис 4.4. Определение натуральной длины отрезка

а) и угла α; б) и угла β

Решение. На рис.4.4а выполнена замена фронтальной плоскости проекций V новой плоскостью V1 проекция которой параллельна горизонтальной проекции отрезка АВ, поэтому плоскость V параллельна отрезку. Линии связи перпендикулярны новой оси Х1. От новой оси на линиях связи отложены отрезки, равные расстояниям фронтальных проекций АV и ВV точек до оси Х. В новой системе V1/H отрезок АВ преобразовался во фронталь.

На рис.4.4б, показано решение этой же задачи, если отрезок АВ преобразовать в новой системе V/H1 в горизонталь.

Задача: Преобразовать прямую общего положения в проецирующую (рис.4.5).

Решение. Для того, чтобы прямая общего положения в новой системе плоскостей проекций стала проецирующей, нужно последовательно решить рассмотренные первую и вторую задачи. Первой заменой преобразовать прямую в линию уровня фронталь. Второй заменой фронталь преобразовать в горизонтально-проецирующую прямую.

Рис 4.5. Преобразование чертежа

Задача: Определить расстояние между двумя параллельными прямыми k и m (рис.4.6).

Рис 4.6. Определение расстояния между прямыми

Решение. Так как m и k фронтали, то заменяем плоскость Н на Н1, причем Н1 берем перпендикулярно прямым m и k, чтобы они стали проецирующими.

 







Дата добавления: 2014-12-06; просмотров: 941. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия