Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 5. МНОГОГРАННИКИ





 

Общие положения

Многогранником называют геометрическое тело, ограниченное плоскими многоугольниками. Эти многоугольники называют гранями общие стороны смежных многоугольников – ребрами, вершины многогранных углов, образованных его гранями, сходящимися в одной точке - вершинами многогранника.

Совокупность вершин и соединяющих их ребер называют сеткой многогранника.

Рассмотрим только выпуклые многогранники, то есть такие, все грани которых лежат по одну сторону от каждой его грани.

Из всех многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.

Многогранник, две грани которого n–угольники, лежащие в параллельных плоскостях, а остальные грани параллелограммы, называется n–угольной призмой.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой.

Если боковые ребра призмы не перпендикулярны плоскостям оснований, то она называется наклонной призмой.

Многогранник, одна из граней которого произвольный многоугольник, а остальные грани треугольники имеющие общую вершину, называется пирамидой (рис.5.1б).

Если основание пирамиды правильный многоугольник и вершина пирамиды лежит на перпендикуляре восстановленном из центра этого многоугольника, то она называется правильной пирамидой (рис.5.1б).

К правильным многогранникам относятся те, грани которых представляют собой равные и правильные многоугольники, например: гексаэдр (куб) – правильный шестигранник (рис.5.1а), тетраэдр – правильная треугольная пирамида (рис.5.1в), октаэдр – правильный восьмигранник, додекаэдр – правильный двенадцатигранник, икосаэдр – правильный двадцатигранник.

Правильный четырехгранник, или тетраэдр (рис.5.1в), состоит из четырех равносторонних и равных треугольников. Они соединены по три около каждой вершины. Тетраэдр представляет собой частный случай пирамиды. Правильный шестигранник (куб), или гексаэдр, состоит из шести равных квадратов, соединенных по три у каждой вершины.

На комплексном чертеже построение многогранников сводится к построению его сетки (проекций его вершин и ребер). Из многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.

 

Рис. 5.1 – Многогранники: а) куб; б) пирамида; в) тетраэдр;







Дата добавления: 2014-12-06; просмотров: 937. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия