Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Портфельный анализ





Вкладывая средства в различные ценные бумаги, инвестор формирует портфель инвестиций. Он стремится сформировать этот портфель так, чтобы при требуемой им доходности снизить риск либо при данном приемлемом уровне риска повысить доходность.

Ожидаемая доходность инвестиционного портфеля определяется как средневзвешенная величина ожидаемых доходностей активов, включенных в портфель:

Rp = R1*W1+ R2*W2+… + Rn*Wn,

где Ri – доходность i-й ценной бумаги, Wi – доля инвестиций в i-ю бумагу.

Риск портфеля в целом измеряется при помощи дисперсии и стандартного (среднеквадратичного) отклонения портфеля.

Для расчета дисперсия портфеля, состоящего из n ценных бумаг, используется формула:

2 = Wi * Wj,

где – ковариация ценных бумаг i и j, Wi, Wj.– их удельные веса.

Для случая двух ценных бумаг последнее выражение преобразуется к виду:

2 = Wi * Wj, = *W12 + *W22 +2* *W1* W2

Ковариация характеризует взаимосвязь двух случайных величин. Формула для вычисления ковариации имеет примерно такой же вид, как и для вычисления дисперсии:

= (Rxк - Rcx)*(Ryк - Rcy)*Pi,

Где ковариация между ценными бумагами х и у; Rxк, Ryк – норма дохода по акциям Х и У; Rcx, Rcy – ожидаемая норма дохода по ценным бумагам х и у; п - число вариантов (наблюдений), Pi.- вероятность i – го состояния.

Главное отличие ковариации от дисперсии состоит в том, что в ней присутствуют параметры двух активов Х и У. Ковариация характеризует степень взаимосвязи их изменения. Если активы имеют тенденцию изменяться в одном и том же направлении, то говорят, что они имеют положительную ковариацию, если активы изменяются разнонаправлено, то они имеют отрицательную ковариацию, если они изменяются независимо друг от друга, то ковариация между ними равна нулю.

Рассмотрим процедуру расчета ковариации активов А и В (см. табл.)

Состояние экономики Вероятность состояния % Доходность актива А Отклонение от среднего Доходность актива В Отклонение от среднего Произведение отклонений Взвешенное произведение
Рецессия Слабый рост Умеренный рост Высокие темпы роста   0, 0 0, 06 0, 08   0, 10 -0, 06 0, 0 +0, 02   +0, 04 -0, 0 0, 05 0, 10   0, 015 -0, 07 -0, 02 +0, 03   0, 08 0, 0042 0, 0 0, 0006   0, 0032 0, 00084 0, 0 0, 00024   0, 00032
          Ковариация 0, 0014

 

Процедура расчета ковариации включает расчет среднего значения для каждого актива, отклонений от среднего значения и произведения отклонений. Далее рассчитывается взвешенное по вероятности произведение отклонений и значение ковариации. Ковариация является показателем взаимосвязи двух переменных. В данном примере она является положительной. Это означает, что доходность активов А и В имеет тенденцию изменяться в одном направлении.

Проблема использования показателя ковариации состоит в сложности содержательной интерпретации его числового значения. В связи с этим наибольшее практическое применение получил такой показатель взаимозависимости двух переменных, как коэффициент корреляции, который определяется из следующего соотношения:

CRxy = /( ),

где - стандартное отклонение доходности ценных бумаг.

Коэффициент корреляции является нормированным показателем и его значение лежит в диапазоне от -1 до +1. Если CR xy = -1, то это означает, что значения доходности активов изменяются строго в противоположных направлениях, а ели - +1, строго в одном направлении. Значения коэффициента корреляции, находящиеся между двумя крайними значениями характеризует определенный уровень взаимосвязи между ценными бумагами.

В нашем примере коэффициент корреляции равен

CRав = в/( ) = 0, 0014/(0, 3225*0, 04583) = 0, 95

Таким образом, активы А и В имеют примерно одинаковый характер изменения, т.е. между ними существует сильная взаимосвязь.

Рассчитаем показатели дисперсии и стандартного отклонения портфеля при условии равенства удельных весов ценных бумаг в портфеле

 

2 = 2 Wx2 + 2 Wу2 +2*( * * Wx* Wу*Corxy)

= 2

2 = (0, 5)2 *0, 00104 + (0, 5)2 *0, 0021 +2*(0, 5)*(0, 5)*(0, 0014)=0, 001485.

= 0, 001485 = 0, 0385

Таким образом, в данном примере стандартное отклонение портфеля находится в интервале между стандартными отклонениями активов А и В.







Дата добавления: 2014-12-06; просмотров: 786. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия