Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Где – ковариация ценных бумаг i и j





В качестве ограничения выступаетсредняя доходность портфеля

Rр = RiWi,

где Ri, Wi доходность и удельный вес включенной в портфель i – ой ценной бумаги.

При этом сумма удельных весов бумаг должна быть равна 1, т.е.

Wi. = 1.

Для того, чтобы найти решение такой задачи вводят набор переменных λ 1 и λ 2, называемых множителями Лагранжа и составляется функция Лагранжа:

L = Wi * Wj1 *( RiWi - Rр)+ λ 2 *( Wi. - 1),

где λ 1, λ 2— множители Лагранжа.

Структура портфеля, имеющего минимизирующий риск, определяется решением системы уравнений:

dL/dWi =0

dL/d λ к, =0.

где к = 1, 2.

Данная система уравнений представляет собой модель, позволяющая определить структуру оптимального портфеля.

Пример. Необходимо сформировать портфель из двух ценных бумаг Альфа и Омега, обладающий минимальным риском. Бумаги имеют следующие показатели доходности и риска: RА = 12%, RО = 5.1%, = 21.1%, = 8.3%., коэффициент корреляции равен 0.18. Доходность портфеля Rр должна составлять 8.9%. Функция Лагранжа для данной задачи будет иметь вид

L = *WА2 + **WО2 +2*WА * WО* + λ 1 *(RАWА + RОWО – Rр)+ λ 2 *(WА+. WО – 1).

dL/dWА = 2 *WА +2* WО* + λ 1 * RА + λ 2 = 0

dL/dW2 = 2 *WА +2* WО* + λ 1 * RО + λ 2 = 0

dL/d λ 1, = RАWА + RОWО – Rр = 0.

dL/d λ 2, = WА+. WО - 1 =0

Представим данную систему уравнений в матричном виде:

2 2 RА     WА    
2 2 RО   * WО =  
RА RО       λ 1   Rр
          Λ 2    

 

2 2 RА     WА    
2 2 RО   * WО =  
RА RО       λ 1   Rр
          Λ 2    

 

 

Если обозначить матрицу через Н, вектор – через А и вектор в правой части – через G, то получим уравнения в матричной форме:

Н*А = G,

А = Н-1* G.

 

Рассмотрим далее задачу для случая портфеля состоящего из трех ценных бумаг:

L = *W12 + *W22 + *W32 +2*W1 * W2* +2*W1 * W3* +2*W2 * W3* + λ 1 *(R1W1 + R2W2 + R3W3 – Rр)+ λ 2 *(W1+. W2 W3 – 1).

dL/dW1 = 2 *W1 +2* W2* + 2W3* + λ 1 * R1 + λ 2 = 0

dL/dW2 = 2 *W1 +2* W2* + 2W3* + λ 1 * R2 + λ 2 = 0

dL/dW3 = 2 *W1 +2* W2* + 2W3* + λ 1 * R3 + λ 2

dL/d λ 1, = R1W1 + R2W2 + R3W3 – Rр = 0.

dL/d λ 2, = W1+. W2 W3 - 1.

Представим данную систему уравнений в матричном виде:

2 2 2 R1     W1    
2 2 2 R2     W2    
2 2 2 R3   * W3 =  
R1 R2 R3       λ 1   Rр
            Λ 2    

 

Если обозначить матрицу через Н, вектор – через А и вектор в правой части – через G, то получим уравнения в матричной форме:

Н*А = G,

А = Н-1* G.

Пример. Имеются три акции. Их параметры представлены в таблице

Номер акции Ri
  0, 06 0, 09 0, 18 0, 35 0, 42 0, 75 = -0, 1 = 0, 42 = 0, 30

 

Матрица Н G и Н-1 для данной задачи будет иметь следующий вид

0, 7 -0, 2 0, 6 0, 06  
-0, 2 0, 84 1, 0 0, 09  
0, 6 1, 0 1, 5 0, 18  
0, 06 0, 09 0, 18    
         

 

 
 
 
Rр
 

 

0, 416 -0, 555 0, 138 -3, 481 0, 723
-0, 55 0, 74 -0, 185 -6, 47 1, 035
0, 139 -0, 185 0, 046 9, 951 -0, 759
-3, 481 -6, 4695 9, 951 -12, 836 -4, 057
0, 724 1, 035 -0, 759 -4, 057 -0, 399

 

Удельные веса акций будут равны

W1   - 3, 481* Rр +0, 723
W2 = -6, 470* Rр +1, 035
W3   9, 951* Rр +0, 759

 

Если инвестор хочет получить доходность Rр = 12%, то получим: W1 = 0, 305, W2 = 0, 259, W3 = 0, 435.

Рассмотренный пример иллюстрирует вычислительные трудности, связанные с использованием модели Марковица. Так сам Марковиц подсчитал, что анализ 100 ценных бумаг требует вычисления 100 ожидаемых значений доходности, 100 дисперсий и почти 5000 ковариаций. В связи с этим уже 1962 корпорацией IBM была разработана первая компьютерная программа для реализации модели Марковица.

 







Дата добавления: 2014-12-06; просмотров: 785. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия