Студопедия — Лучевые тетроды
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лучевые тетроды






В лучевом тетроде динатронный эффект устраняется путём увеличения объёмной плотности электронного потока первичных электронов за счёт его фокусировки в вертикальной и горизонтальной плоскостях. Такой луч образует потенциальный барьер для электронов, выбитых из анода.

Лучевые тетроды применяют в мощных усилителях.


Пентоды

Устранение динатронного эффекта в пентоде происходит путём создания тормозящего поля между анодом и экранирующей сеткой с помощью специальной сетки, которая получила название защитной, или антидинатронной сетки. Для выполнения своей задачи – создания тормозящего поля для вторичных электронов, выбитых из анода, на защитную сетку обычно подаётся нулевой потенциал или реже небольшое постоянное напряжение, отрицательное или положительное, в зависимости от выполняемой лампой функции. Для того чтобы третья сетка не оказывала заметного влияния на скорость движения первичных электронов, проницаемость защитной сетки увеличивается.

Для первичных электронов, летящих к аноду с большой скоростью и обладающих большой энергией, защитная сетка не представляет заметного препятствия, но для вторичных электронов, вылетающих с анода с небольшой скоростью, поле защитной сетки является настолько тормозящим, что не позволяет им попасть на экранную сетку предотвращает динатронный эффект.

 
 

 


С3 С2

С1

 
 

 

 


Статические параметры тетродов и пентодов:

Крутизна характеристики

S= Δ IА /Δ UC, при UА , UС2, UС3 = const

Внутреннее сопротивление

Ri = Δ UА/Δ IА, при UC1 , UC2, UC3= const

Коэффициент усиления

μ = - Δ UА / Δ UC, при IА= const, UC1, UC3= const

 

 


Электронно-лучевые приборы

Электронно-лучевыми приборами называют электровакуумные приборы, в которых формируется сконцентрированный в виде луча электронный поток, управляемый электрическими сигналами. Эти приборы широко применяются в телевидении, осциллографии, радиолокации, вычислительной технике и т.д.

По видам преобразования существует несколько основных типов электронно-лучевых приборов:

- приборы, преобразующие электрические сигналы в видимое изображение, – осциллографические трубки, приёмные телевизионные трубки;

- приборы, преобразующие видимое изображение в электрические сигналы, – передающие телевизионные трубки;

- приборы, преобразующие невидимые глазом изображения в видимые, – электронные микроскопы.

 


Принципы управления электронным лучом

Преобразование электрической энергии в видимое изображение происходит на экране соответствующих электронно-лучевых трубок. Экран представляет собой тонкий слой вещества, которое обладает способностью светиться под воздействием бомбардировки его поверхности электронами и называется люминофором.

В зависимости от энергии электронов, бомбардирующих экран, возможны следующие явления:

1. Вторичная эмиссия с экрана. Она произойдёт в том случае, если энергия электронов равна работе выхода вещества люминофора или больше её.

2. Возбуждение атомов люминофора. Оно происходит в случае, если энергия электронов меньше работы выхода вещества люминофора. При этом часть электронов из валентной зоны и примесных уровней вещества люминофора переходит в зону проводимости. Состояние возбуждения неустойчиво, т.к. при взаимодействии с ионами кристаллической решётки электроны, попавшие в зону проводимости, теряют полученную энергию и очень быстро возвращаются на прежние уровни. Электроны отдают в окружающее пространство ровно столько энергии (в виде электромагнитных волн), сколько они получили при возбуждении и переходе на более отдалённую от ядра орбиту. При создании люминофора добиваются, чтобы энергия излучения попала в спектр видимых глазом электромагнитных волн. Каждой длине волны этого излучения будет соответствовать и определённый цвет свечения экрана.

Для того, чтобы произошло возбуждение атомов люминофора, требуется значительная энергия

W = nqUa,

где q – заряд электрона, n – число электронов, U a - ускоряющее напряжение, действующее на электрон.

Для получения требуемой энергии ускоряющее напряжение должно быть не менее единиц – десятков киловольт.

Общее число электронов n, бомбардирующих экран, должно быть велико, т.е. требуется пучок электронов или электронный луч. Получение пучка электронов в электронно-лучевых трубках, как и в электронных лампах, происходит на основе термоэлектронной эмиссии. Бомбардировка экрана лучом тем эффективней и свечение точки на экране тем ярче, чем больше электронов сосредоточится на единице поверхности экрана. Следовательно, в электронно-лучевой трубке необходимо добиться минимально возможного сечения электронного луча. По аналогии с оптикой это явление называют фокусировкой луча.

Чтобы электронный луч вычерчивал на экране изображение, он должен перемещаться по экрану, поэтому в электронно-лучевой трубке необходима система отклонения луча по экрану.

Таким образом, трубка действует по таким принципам – создание потока заряженных частиц, управление этим потоком и, как результат, преобразование одного вида энергии в другой.

Управление электронным лучом в электронно-лучевых трубках гораздо сложнее, чем в лампах: кроме изменения тока луча, как в лампах, требуется ещё его фокусировка и отклонение. Для воздействия на луч с целью его фокусировки и отклонения используются либо электростатические, либо электромагнитные поля.


Осциллографические трубки с электростатической фокусировкой и отклонением

Они предназначены для преобразования электрических сигналов в видимое изображение.

Трубка состоит из электронного прожектора, системы отклонения и экрана.

Назначение электронного прожектора – формирование электронного луча и его фокусировка, а также создание сильного ускоряющего поля для электронов луча.

Электронный прожектор содержит обычный подогревный катод. Нить накала находится внутри цилиндра, а оксидный катод нанесён на его торец. Назначение катода – термоэлектронная эмиссия. Катод помещён внутри другого цилиндра – модулятора, торцевая часть которого представляет собой диафрагму с узким круглым отверстием. На модулятор подается отрицательное относительно катода напряжение. При изменении этого напряжения меняются ток луча и яркость свечения экрана.

Кроме того, прожектор имеет два анода, представляющих собой полые цилиндры с диафрагмами, имеющими очень маленькие отверстия для пролёта электронов, что также позволяет уменьшить сечение луча, т.к. электроны, которые сильно отклонились от оси трубки, не пройдут дальше. На второй анод подаётся высокое напряжение в единицы киловольт в зависимости от типа трубок, на первый анод меньшее напряжение – сотни вольт. Оба анода создают сильное ускоряющее поле для электронного луча с тем, чтобы сообщить электронам достаточную кинетическую энергию, необходимую для возбуждения атомов люминофора.

При бомбардировке экрана электронным лучом, также возникает вторичная эмиссия электронов. Вторичные электроны притягиваются к проводящему графитовому слою, который нанесён на внутреннюю поверхность колбы. Этот слой называется аквадаг. Он соединён внутри колбы со вторым анодом.

Внутри баллона трубки, как и в электронных лампах, создается вакуум. На внутренней торцевой поверхности расширенной части баллона наносится люминофор, образующий экран.

Цель фокусировки – получение минимального поперечного сечения луча в заданной точке на экране. Электронный луч – это поток одноименно заряженных частиц, испытывающих силы взаимного отталкивания, что является противодействием фокусировке. Система электростатической фокусировки содержит две электронные линзы, которые позволяют свести электроны луча в точке на поверхности экрана.

Для того, чтобы электронный луч вычерчивал на экране требуемое изображение, он должен перемещаться в определённой последовательности как по горизонтали, так и по вертикали. Для управления перемещением луча на экране служит система отклонения или развёртки. Система электростатического отклонения луча состоит из двух пар пластин, к которым подводится напряжение, позволяющее отклонять луч как по вертикали, так и по горизонтали.

 

 


Приложение 1: «Телевизоры на ЖК-панелях»

 

Электронно-лучевые трубки (кинеско­пы), служащие основой любого телеви­зора, существуют уже многие десятиле­тия и постоянно совершенствуются. Од­нако они имеют и недостатки: наличие высокого напряжения, большие объем­ные габариты (особенно в глубину при больших размерах изображения) и др. Поэтому разработчики всегда стреми­лись к новым идеям при создании отоб­ражающих устройств. Одна из них — ис­пользование жидкокристаллического вещества в качестве клапана для пропус­кания световых потоков. Окончательно эта идея воплотилась в виде ЖК-дисплеев (панелей) — LCD (Liquid Crystal Display). Быстрый рост их производства за рубежом привел к появлению как большого числа моделей «плоских- теле­визоров, так и компьютерных мониторов.

Рассмотрим принцип работы и вари­анты конструкции таких дисплеев [1, 2]. В общем, известно, что ЖК вещество (ма­териал) модулирует внешний световой поток под действием электрического поля или тока. Конкретная работа ЖК-дисплеев основана на использовании эффекта вра­щения плоскости поляризации светового потока слоем нематического ЖК вещест­ва (так называемого твист-эффекта).

Конструкция ЖК-панели показана на рис. 1. Панель содержит две плоскопараллельные подложки из прозрачного ма­териала (обычно стекла толщиной около 1 мм), расположенные одна относительно другой с фиксированным зазором, в кото­рый введен ЖК материал. На внутренних сторонах подложек нанесены электроды адресации в виде определенного рисун­ка. В качестве прозрачного проводяще­го слоя электродов используют пленку оксида индия. Слои ориентирующих по­крытий, нанесенные на электроды адре­сации, предназначены для задания опре­деленной ориентации ЖК молекул в рабо­чем материале. Зазор между подложками задают калиброванные ша­рообразные или цилинд­рические распорные эле­менты (спейсеры), диаметр которых может быть в пре­делах 3...25 мкм. После сборки (склеивания) па­нель герметизируют по всему периметру, причем слой герметика также име­ет спейсеры. На внешние стороны подложек наклее­ны поляроиды с опреде­ленной ориентацией плос­кости поляризации.


Принцип работы ЖК-ячейки (пиксела) панели с использованием твист

эффекта иллюстрирует рис. 2. Молекулы ЖК ма­териала обладают дипольным моментом. В ре­зультате взаимодействия электрических полей диполей образу­ется спиралевидная структура из моле­кул ЖК вещества. Слои ориентирующих покрытий на верхней и нижней подлож­ках совместно с дипольной структурой ЖК материала в отсутствие электриче­ского поля обеспечивают поворот пло­скости поляризации светового потока на 90°. Ориентированный так слой не­матического ЖК вещества обладает свойством поляризации проходящего через него светового потока. Плоско­сти поляризации верхнего и нижнего поляризационных фильтров повернуты один относительно другого на 90э.

Как видно на рис. 2, а. световой по­ток сначала проходит через верхний поляризационный фильтр. При этом его половина, не имеющая азимуталь­ной поляризации, теряется. Остальная часть уже поляризованного света, про­ходя через слои ЖК материала, пово­рачивает плоскость поляризации на 90°. В результате ориентация плоскости поляризации светового потока будет совпадать с плоскостью поляризации нижнего фильтра и поток будет прохо­дить через него практически без потерь.

 

Если ЖК вещество поместить в электрическое поле, подав на электроды адресации напряжение так, как показано на рис. 2.б, спи­ралевидная молекулярная струк­тура в нем разрушается. Проходя­щий через ЖК материал световой поток уже не изменяет плоскость поляризации и почти полностью поглощается нижним поляризаци­онным фильтром. Следователь­но, ЖК вещество имеет два опти­ческих состояния: прозрачное и непрозрачное. Отношение коэф­фициентов пропускания в обоих состояниях определяет.контрастность/изображения.…………………………………………………….
Для обеспечения управления опти­ческим состоянием ячеек-пикселов (элементов изображения) панели тре­буется сформировать такие напряже­ния на электродах адресации, чтобы состояние каждого пиксела изменя­лось без изменения состояния других. Исходя из этого топология электродов адресации ЖК-панели представляет собой матрицу, образованную систе­мой строчных и столбцовых электро­дов, расположенных конструктивно на двух параллельных прозрачных под­ложках. Элементы (пикселы) телевизи­онного изображения в ЖК-панели об­разуются на пересечении строчных и столбцовых электродов. Для реали­зации управления большим числом элементов изображения (а в телевизо­рах это практически всегда так) приме­няют мультиплексирование сигналов.

Несколько вариантов топологии мат­риц, используемых в ЖК-панелях, пред­ставлено на рис. 3. Вариант на рис. З а — самый простой и наиболее популярный. Вариант на рис. 3, 6 позволяет получить более широкий шаг выводов для подачи столбцовых управляющих сигналов. Ва­рианты на рис. З.в и г — разновидности архитектуры Dual Scan (или Double Scan), при которой обеспечивается уменьше­ние числа мультиплексируемых строк, что позволяет еще больше увеличить кон­трастность изображения. Фактически в этих случаях формируются два отдель­ных экранных поля, зазор между которы­ми незаметен. Адресация сигналов для обоих полей происходит одновременно.

 

 

Различают два способа адресации в ЖК-панелях: пассивный и активный. При пассивной адресации используют временное мультиплексирование строк без применения каких-нибудь ключе­вых элементов. Недостатками такого способа можно назвать низкий коэф­фициент мультиплексирования при ма­лой контрастности, сильное проявле­ние кросс-эффекта и сложная система формирования управляющих сигналов.

При активной адресации для каждого пиксела на пересечении строки и столбца создают ключевой элемент по схеме, изображенной на рис. 4. Такие элементы позволяют использовать более низкий коэффициент мультиплексирования. Контрастность изображения при этом получается значительно выше. Однако ЖК панели с активной адресацией гораз­до дороже панелей с пассивной адресацией, что удорожает и построенные на них аппараты. Активными ключевыми элементами чаще всего служат тонко­пленочные полевые транзисторы ТП" (Thin Film Transistor). На рис. 5.а показан ва­риант топологии, а на рис. 5, б — принципиаль­ная схема ключевого эле­мента активной адреса­ции на таком транзисторе.

 

 

 

 

Цветные фильтры размещают на внутренней стороне ближней к зрите­лю подложки ЖК-панели. Материалами для изго­товления фильтров служат тонкие пленки различных красителей. Их наносят по различным технологиям: осаждением из растворов или из газовых сред, пе­чатным способом и др. Варианты топологии цвет­ных фильтров иллюстри­рует рис. 6 (R — для крас­ного цвета, G — зеленого, B — синего).


 

 

Число строк ЖК-панелей определяет коэффициент мульти­плексирования. Чаще всего применя­ют низкомультиплексированные пане­ли со значениями коэффициента 1: 2, 1: 3 и 1: 4. В зависимости от этого в кон­кретных устройствах управления созда­ется несколько уровней постоянного напряжения, из которых формируются напряжения управления строками и столбцами необходимой формы.

На рис. 7 изображены диаграммы на­пряжений адресации в ЖК-панелях с коэффициентом мультиплексирова­ния 1: 3. На нем ВРО—ВР2 обозначают сигналы строчных выходов; Sn—Sn+1 — сигналы столбцовых выходов, Udd — напряжение питания контроллера уп­равления панелью; Ulcd — напряжение смещения, питающее выходные фор­мирователи сигналов; Uобр. равное Udd - Ulcd. — образцовое напряжение: Тk — период кадровой развертки.

 

 


Для создания светового потока в ЖК-панелях применяют устройство задней подсветки, которое содержит источник излучения, светораспределители (све­товоды) и один или два отражателя. Источником излучения служат лампы накаливания, светодиоды, электролюминесцентные панели, чаще всего, люминесцентные лампы. На рис. 8 представлены типовые конструкции ус­тройств задней подсветки с фронталь­ным (рис. 8, а) и торцевым (рис. 8, б) рас­положением люминесцентной лампы.

 

Глава 1. Исторический обзор развития микроэлектроники.

 

1.1. Основные направления развития электроники.

 

Электроника – это наука, изучающая явления взаимодействия электронов и других заряженных частиц с электрическими, магнитными и электромагнитными полями, что является физической основой работы электронных приборов и устройств (вакуумных, газозарядных полупроводниковых и других), используемых для передачи, обработки и хранения информации.

Охватывая широкий круг научно-технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом, с одной стороны, электроника ставит перед другими науками и производством новые задачи, стимулируя их дальнейшее развитие, и с другой – снабжает их качественно новыми техническими средствами и методами исследований.

Основными направлениями развития электроники являются: вакуумная, твердотельная и квантовая электроника.

Вакуумная электроника – это раздел электроники, включающий исследования взаимодействия потоков свободных электронов с электрическими и магнитными полями в вакууме, а также методы создания электронных приборов и устройств, в которых это взаимодействие используется. К важнейшим направлениям исследования в области вакуумной электроники относятся: электронная эмиссия (в частности, термо- и фотоэлектронная эмиссия); формирование потока электронов и / или ионов и управления этими потоками; формирование электромагнитных полей с помощью устройств ввода и вывода энергии; физика и техника высокого вакуума и др.

Основные направления развития вакуумной электроники связаны с созданием электровакуумных приборов следующих видов: электронных ламп (диодов, триодов, тетродов и т.д.); электровакуумных приборов сверхвысокой частоты (например, магнетронов, клистронов, ламп бегущей и обратной волны); электроннолучевых и фотоэлектронных приборов (например, кинескопов, видиконов, электронно-оптических преобразователей, фотоэлектронных умножителей); газоразрядных приборов (например, тиратронов, газозарядных индикаторов).

Твердотельная электроника решает задачи, связанные с изучением свойств твердотельных материалов (полупроводниковых, диэлектрических, магнитных и др.), влиянием на эти свойства примесей и особенностей структуры материала; изучением свойств поверхностей и границ раздела между слоями различных материалов; созданием в кристалле различными методами областей с различными типами проводимости; созданием

uетеропереходов и монокристаллических структур; созданием функциональных устройств микронных и субмикронных размеров, а также способов измерения их параметров.

Основными направлениями твердотельной электроники являются: полупроводниковая электроника, связанная с разработкой различных видов полупроводниковых приборов, и микроэлектроника, связанная с разработкой интегральных схем.

Квантовая электроника охватывает широкий круг вопросов, связанных с разработкой методов и средств усиления и генерации электромагнитных колебаний на основе эффекта вынужденного излучения атомов и молекул. Основные направления квантовой электроники: создание оптических квантовых генераторов (лазеров), квантовых усилителей, молекулярных генераторов и др. Особенности приборов квантовой электроники следующие: высокая стабильность частоты колебаний, низкий уровень собственных шумов, большая мощность в импульсе излучения - которые позволяют использовать их для создания высокоточных дальномеров, квантовых стандартов частоты, квантовых гироскопов, систем оптической многоканальной связи, дальней космической связи, медицинской аппаратуры, лазерной звукозаписи и воспроизведения и др. Созданы даже миниатюрные лазерные указки для минимального сопровождения.

 

1.2. История развития микроэлектроники.

 

Микроэлектроника является продолжением развития полупроводниковой электроники, начало которой было положено 7 мая 1895 года, когда полупроводниковые свойства твердого тела были использованы А.С.Поповым для регистрации электромагнитных волн.

Развитие твердотельной электроники тесно связано с успехами физики и химии полупроводниковых материалов. По удельному сопротивлению ρ полупроводники занимают промежуточное место между металлами и диэлектриками. Для полупроводников ρ составляет 10-5-108 Ом·м, для диэлектриков 1016-1022 Ом·м, для металлов 10-8-10-6 Ом·м. Температурный коэффициент сопротивления у полупроводников отрицателен, т.е. с увеличением температуры их сопротивление уменьшается.

В отличие от металлов полупроводники сильно изменяют свои свойства от присутствия даже очень небольших концентраций примеси. У полупроводников заметное изменение ρ наблюдается также под действием света, ионизирующих излучений и других энергетических воздействий.

Так, например, при концентрации примесных атомов в полупроводнике около 10-4 атомных процентов его удельная проводимость изменяется на несколько порядков.

Дальнейшее развитие полупроводниковой электроники связанно с разработкой в 1948 году точечного транзистора (американские ученые Шокли, Бардин, Браттейн), в 1950 году – плоскостного биполярного транзистора, а в 1952 году полевого (униполярного) транзистора. Наряду с транзисторами были разработаны и стали широко использоваться другие различные виды полупроводниковых приборов: диоды различных классов и типов, варисторы, варикапы, тиристоры, оптоэлектронные приборы (светоизлучающие диоды, фотодиоды, фототранзисторы, оптроны, светодиодные и фотодиодные матрицы).

Создание транзистора явилось мощным стимулом для развития исследований в области физики полупроводников и технологий полупроводниковых приборов. Для практической реализации развивающейся полупроводниковой электроники потребовались сверхчистые полупроводниковые и другие материалы и специальное технологическое и измерительное оборудование. Именно на этой базе стала развиваться микроэлектроника.

Следует отметить, что основные принципы микроэлектроники – групповой метод и планарная технология – были освоены при изготовлении транзисторов в конце 50 годов.

Первые разработки интегральных схем (ИС) относятся к 1958 – 1960г.г. В 1961 – 1963г.г. ряд американских фирм начали выпускать простейшие ИС. В то же время были разработаны пленочные ИС. Однако некоторые неудачи с разработками стабильных по электрическим характеристикам пленочных активных элементов привели к преимущественной разработке гибридных ИС. Отечественные ИС появились в 1962 – 1963г.г. Первые отечественные ИС были разработаны в ЦКБ Воронежского завода полупроводниковых приборов (схемы диодно-транзисторной логики по технологии с окисной изоляцией карманов). По технологии изготовления эти схемы уступали 2 года западным разработкам.

В историческом плане можно отметить 5 этапов развития микроэлектроники.

Первый этап, относящийся к первой половине 60-х годов, характеризуется степенью интеграции ИС до 100 элементов / кристалл и минимальным размером элементов порядка 10 мкм.

Второй этап, относящийся ко второй половине 60-х годов и первой половине 70-х годов, характеризуется степенью интеграции ИС от 100 до 1000 элементов/кристалл и минимальным размером элементов до 2 мкм.

Третий этап, начавшийся во второй половине 70-х годов, характеризуется степенью интеграции более 1000 элементов/кристалл и минимальным размером элементов до 1 мкм.

Четвертый этап, характеризуется разработкой сверхбольших ИС со степенью интеграции более 10000 элементов/кристалл и размерами элементов 0, 1 – 0, 2 мкм.

Пятый, современный, этап характеризуется широким использованием микропроцессоров и микро-ЭВМ, разработанных на базе больших и сверхбольших ИС.

 

Контрольные вопросы:

1.Дайте определение электроники как науки.

2. Назовите основные направления развития электроники.

3. Назовите основные направления твердотельной электроники.

4. Охарактеризуйте пять этапов развития микроэлектроники.

Глава 2. Общие сведения о полупроводниках

 

2.1. Полупроводники и их электрофизические свойства

 

Полупроводники — наиболее распространенная в природе группа веществ. К ним относятся химические элементы: бор (В), углерод (С), кремний (Si), фосфор (Р), сера (S), германий (Ge), мышьяк (As), селен (Se), олово (Sn), сурьма (Sb), теллур (Те), йод (I); химические соединения типа: AIBVII, AIIIBV, AIVBIV, AIBVI, AIVBVI, (GaAs, GeSi, CuO, PbS и др.); большинство при­родных химических соединений — минералов, число которых составляет около 2 тыс., многие органические вещества.

В электронике находит применение лишь ограниченное число полупроводниковых веществ. Исходные материалы, из которых изготавливают полупроводниковые приборы, должны обладать определенными физико-химическими и механическими свойствами.

Они должны иметь вполне определенное ρ в диапазоне рабочих температур ∆ T. Такое удельное сопротивление можно получить при достаточно большом количестве свободных носителей заряда и их беспрепятственном движении в объеме полупроводника. Следовательно, необходимо твердое тело, в котором концентрация свободных носителей заряда n, их диффузионная длина L и время жизни τ были бы достаточно большими. Этим требованиям удовлетворяют в первую очередь монокристаллы, в которых в отличие от аморфных тел и поликристаллов обеспечивается высокая периодичность решетки. Однако не все монокристаллы обладают полупроводниковыми свойствами. А среди полупроводниковых кристаллов лишь немногие по своим параметрам и свойствам пригодны для изготовления полупроводниковых приборов.

На приведенном фрагменте таблицы Периодической системы элементов Д. И. Менделеева (рис. 2.1) жирной линией обведена область, в которой расположены элементы, обладающие полупро­водниковыми свойствами. Слева и снизу от этой области расположены металлы, справа и сверху — диэлектрики.

Электропроводность твердого тела зависит от структуры внешних электронных оболочек его атомов, определяющих месторасположение элементов в таблице. Число справа внизу от химиче­ского символа обозначает ширину запрещенной зоны элемента в электрон-вольтах, число в правом верхнем углу — порядковый номер элемента в таблице.

Из рис. 2.1 видно, что полупроводниковыми свойствами обладают лишь 12 химических элементов. Среди них наиболее подходящими для производства полупроводниковых приборов оказались германий (Ge) и кремний (Si).

Германий встречается, главным образом, в сернистых минералах, некоторых силикатах и карбонатах, а также в каменных углях и богатых углем породах. Содержание Ge в земной коре всего 7·10-4%, он широко рассеян в горных породах. Для полупроводниковых приборов необходим Ge, почти не содержащий примесей других элементов. На 108 его атомов лишь один может быть чужеродным, но и то не любым, а принадлежащим к группе определенных «легирующих» элементов (чаще всего Sb, As, Ga, In, как показано на рис. 2.1 стрелками). Поэтому производство Ge представляет известную сложность.

 

 

Рис. 2.1.

 

Кремний — наиболее распространенный (после кислорода) элемент, но в чистом виде он не встречается. Давно известным соединением Si является его двуокись SiO2. Твердая земная кора содержит 'по массе 27, 6% кремния и состоит более чем на 97% из природных силикатов, т. е. солей кремниевых кислот, а также двуокиси кремния SiO2 преимущественно в виде кварца. Для производства полупроводниковых приборов необходим также очень чистый Si. Получение чистых кристаллов кремния еще более сложно, чем кристаллов германия. Кремний имеет высокую температуру плавления (около 1500°С) и в расплавленном состоянии очень высокую химическую активность. Это резко повышает технологические трудности получения чистых кристаллов и легирования их нужными примесями (в качестве последних чаще всего используются В, Аl и Р, как показано на рис. 2.1). Поэтому чистый кремний, как и германий, довольно дорогой элемент.

Для изготовления полупроводниковых приборов применяют и Ge и Si, они не являются конкурирующими элементами, так как сообщают приборам разные свойства. Например, транзисторы из германия работают до +(100-120)°С, а из кремния до +(150-200) °С. Однако германиевые транзисторы работают при более низких температурах и обладают лучшими частотными характеристиками, чем кремниевые, так как подвижность свободных носителей заряда в Ge выше.

На 2.1 указаны еще несколько элементов, обладающих полупроводниковыми свойствами. Однако большинство из них непригодно для изготовления полупроводниковых приборов: либо они проявляют полупроводниковые свойства при температуре меньше 20°С (S и I) или 13°С (Sn), либо только в виде пленок (Sb и As), они сублимируют (I и As), хрупки (Те), легко плавятся (Sn), недостаточно изучены (В) и пр.

В электронике поэтому находит применение лишь ограниченное количество химических элементов, обладающих полупроводниковыми свойствами. На первом месте стоят Ge и Si, используемые в качестве основы при изготовлении полупроводниковых приборов. Бор, фосфор, мышьяк, сурьма, индий, галлий, алюминий используют в качестве примесей. В последние годы начинают применять некоторые соединения, например, арсенид галлия (GaAs), антимонид индия (InSb) и др. Интересны также сплавы и соединения элементов IV группы периодической системы — карбид кремния, сплав кремний — германий и др. Однако они еще недостаточно изучены.

Основными параметрами Ge и Si, определяющими свойства изготовленных из них приборов, являются: ρ — удельное сопротивление; ∆ ε — ширина запрещенной зоны; n- или p-концентрации свободных носителей заряда (электронов и дырок); δ — плотность дислокаций; L — диффузионная длина; τ — время жизни носителей заряда. Чтобы оценить эти параметры, необходимо рассмотреть основы физики полупроводниковых материалов.

 

2.2. Структура полупроводниковых кристаллов

 

Кристаллическое вещество представляет собой сплошную упорядоченную структуру (монокристалл) либо состоит из большого числа мелких монокристаллов, различно ориентированных в пространстве (поликристалл).

Кристаллические вещества анизотропны, т.е. их свойства зависят от кристаллографического направления. Для описания закономерности строения кристаллов необходимо задание направления (прямой). Для задания направления в кристалле достаточно задать координаты любого атома тройкой целых чисел, заключенных в скобки (x, y, z). Если плоскость параллельна какой-либо из координатных осей, то индекс, соответствующей этой оси равен нулю. Основные кристаллографические плоскости кубической решетки показаны на рисунке 2.2.

Кремний и германий представляют собой кристаллы с регулярной структурой. Кристаллическая решетка кремния и германия называется тетраэдрической или решеткой типа алмаза Основу решетки составляет тетраэдр — пространственная фигура, имеющая четыре треугольные грани. В вершинах тетраэдра и в его центре расположены атомы. Центральный атом находится на одинаковом расстоянии от четырех других, находящихся в вершинах. А каждый атом, расположенный в вершине, в свою очередь, является центральным для других четырех ближайших атомов.

 

 

 

Рис.2.2. Основные кристаллографические плоскости кубической решетки

 

При рассмотрении физических процессов в полупроводниковых материалах удобнее пользоваться плоским эквивалентом тетраэдрической решетки (рис. 2.3). Все атомы (большие шарики) находятся в парноэлектронной, ковалентной или просто валентной связи. Парноэлектронные связи (линии на рисунке) образуются валентными электронами (на рисунке — маленькие шарики) при сближении атомов. Так располагаются атомы чистых четырехвалентных элементов, в том числе Ge и Si, при очень низкой температуре.

 

 

 

Рис.2.3.

 

При выращивании монокристаллов из расплава очень трудно получить материалы со строго регулярной структурой. Обычно в процессе производства получаются неоднородности разных типов, нарушается периодичность кристаллической решетки, появляются дефекты.

Существуют разнообразные дефекты кристаллических решеток.

Нульмерные или точечные дефекты, к которым относятся например, межузельный атом или вакансия (рис. 2.4)

 

 

Рис. 2.4.

 

Одномерные или линейные дефекты, например, цепочки межузельных атомов, цепочки вакансий, дислокации.

Двухмерные или поверхностные дефекты, например, границы кристалла, зерен (кристаллитов), т. е. места, где нарушается периодичность решетки.

Трехмерные или объемные дефекты, например, инородные включения, размеры которых существенно больше характерного размера решетки, ее параметра а0. Для Ge постоянная решетки а0 равна 565 Å, для Si —543 Å.

К важнейшим дефектам кристаллических решеток относятся дислокации —специфические линейные дефекты, связанные с нарушением правильного чередования плоскостей, в которых располагаются группы атомов. Различают несколько видов дислокаций.

Дислокации могут служить центрами генерации и рекомбинации свободных электронов, они влияют на время жизни носителей заряда.

Плотность дислокаций δ определяется как отношение общей длины линий дислокаций к объему образца. Для изготовления полупроводниковых приборов применяют Ge и Si с плотностью дислокаций δ, не превышающей 104 на 1см2, причем для разных типов приборов существует свое предельное значение δ. Например, для сплавных транзисторов требуются Ge и Si с плотностью дислокаций до 103-5·104 см-2, для эпитаксиальных — до 102 см-2 и т. д.

Плотность дислокаций исходного полупроводникового материала во многом определяет электрические параметры приборов, а также разброс этих параметров от экземпляра к экземпляру. От плотности дислокаций в материале зависит и процент годных приборов в серийном производстве.

 

2.3. Свободные носители зарядов в полупроводниках

 

Изображенная на рис. 2.3 структура соответствует «гипотетическому»







Дата добавления: 2014-12-06; просмотров: 860. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия