Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нахождение корней полинома





Для нахождения корней выражения, имеющего вид

vnxn +... + v 2 x 2 + v 1 x + v 0,

лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения и возвращает сразу все корни, как вещественные, так и комплексные.

Polyroots(v)

Возвращает корни полинома степени n. Коэффициенты полинома находятся в векторе v длины n + 1. Возвращает вектор длины n, состоящий из корней полинома.

Аргументы:

v - вектор, содержащий коэффициенты полинома.

 

Задание 2. Найти корни полинома 0.75× x3-8× x+5

Решение:

  1. Введите полином
  2. Представьте полином в виде вектора, для этого

- установите курсор в полиноме над x

- выберите команду Символика Þ Полиномиальные коэффициенты, после этого появится вектор

- выберите команду Правка Þ Вырезать

- напечатайте v: = и вызовите команду Правка Þ Вставить (рис. 2)

Установите курсор ниже введенного вектора и вызовите функцию (команда Вставка Þ Функция…) polyroots, в качестве аргумента задайте вектор v. Как видно у данного полинома три корня.

Рис. 2. Нахождение корней полинома

  1. Найдем корни полинома графически. Для этого:

- представьте полином в виде функции от f(x)

- установите x как диапазон значений от -4 до 4 с шагом 0.1

- постройте график функций f(x) (рис. 3)

  1. С помощью команды ФорматированиеÞ ГрафикÞ Трейс…определите точки пересечения графика с горизонтальной осью f(x)=0. Сравните полученные значения с уже найденными значениями корней полинома.

Рис. 3. Графический способ нахождения корней полинома

 







Дата добавления: 2014-12-06; просмотров: 780. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия