Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем уравнений





MathCAD дает возможность решать также и системы уравнений. Максимальное число уравнений и переменных равно 50. Результатом решения системы будет численное значение искомого корня.

Для решения системы уравнений необходимо выполнить следующее:

1. Задать начальное приближение для всех неизвестных, входящих в систему уравнений. Mathcad решает систему с помощью итерационных методов.

2. Напечатать ключевое слово Given. Оно указывает Mathcad, что далее следует система уравнений.

3. Введите уравнения и неравенства в любом порядке. Используйте [Ctrl]= для печати символа =. Между левыми и правыми частями неравенств может стоять любой из символов <, >, и .

4. Введите любое выражение, которое включает функцию Find, например: а: = Find (х, у).

Функция Find (z 1, z 2 ,...) возвращает точное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое-либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Следующие выражения недопустимы внутри блока решения:

- ограничения со знаком .

- дискретный аргумент или выражения, содержащие дискретный аргумент в любой форме.

- неравенства вида a < b < c.

Блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find.

Функция, которая завершает блок решения уравнений, может быть использована аналогично любой другой функции. Можно произвести с ней следующие три действия:

- Можно вывести найденное решение, напечатав выражение вида:

Find (var 1, var 2, …) =.

- Определить переменную с помощью функции Find:

a: = Find (x) - скаляр,

var: = Find (var 1, var 2, …) - вектор.

Это удобно сделать, если требуется использовать решение системы уравнений в другом месте рабочего документа.

- Определить другую функцию с помощью Find

f (a, b, c, …): = Find (x, y, z, …).

Эта конструкция удобна для многократного решения системы уравнений для различных значений некоторых параметров a, b, c, …, непосредственно входящих в систему уравнений.

Сообщение об ошибке (Решение не найдено) при решении уравнений появляется, когда:

- поставленная задача может не иметь решения,

- для уравнения, которое не имеет вещественных решений, в качестве начального приближения взято вещественное число и наоборот,

- в процессе поиска решения последовательность приближений попала в точку локального минимума невязки; для поиска искомого решения нужно задать различные начальные приближения;

- возможно, поставленная задача не может быть решена с заданной точностью, попробуйте увеличить значение TOL.

Приближенные решения

Функция Minner очень похожа на функцию Find (использует тот же алгоритм). Если в результате поиска не может быть получено дальнейшее уточнение текущего приближения к решению, Minner возвращает это приближение. Функция Find в этом случае возвращает сообщение об ошибке. Правила использования функции Minner такие же, как и функции Find.

Minerr(z 1, z 2 ,...)

Возвращает приближенное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Если Minner используется в блоке решения уравнений, необходимо всегда включать дополнительную проверку достоверности результатов.

 

Задание 3. Решение системы уравнений с помощью функции Find. Система уравнений:

Решение:

  1. Задайте начальные приближения: x1: =0, x2: =0, x3: =0
  2. Начните блок решения уравнений с ключевого слова Given
  3. Введите три уравнения, используя [ Ctrl ]+ = для печати символа =
  4. Вызовите функцию find с аргументами x1, x2, x3 для получения точного решения системы уравнения (рис. 4).

Рис. 4. Решение системы уравнений

 

 







Дата добавления: 2014-12-06; просмотров: 731. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия