Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция случайной величины и ошибка в ее определении





В большинстве случаев искомая величина не может быть измерена непосредственно, а определяется через другие, которые можно измерить. Например, для определения объема шара мы измеряем его диаметр d и потом вычисляем объем . Таким образом, объем в данном случае есть функция диаметра, а сам диаметр измерен с некоторой ошибкой и представляет собой целый ряд значений внутри интервала, ширина которого этой ошибкой обусловлена.

Во всех подобных случаях мы имеем дело с функцией случайной величины, т. к. истинного значения аргумента (в данном случае диаметра) мы не знаем.

Но если значение аргумента находится с определенной степенью точности, то и зависящая от него функция также определяется с ошибкой. На рис.2 представлен график зависимости V от d, из которого видно, что интервалу  d значений аргумента соответствует интервал ∆ V значений функции. Среднему же значению диаметра d ср будет соответствовать среднее значение объема V ср.

Обозначим в общем случае функцию случайной величины буквой Z, а аргумент – буквой А, тогда . Вид этой функции может быть различным. Наиболее распространенные варианты подобных функций и указания, как найти ошибку в ее определении ∆ Z, если задана ошибка в определении аргумента ∆ А, даны в Приложении 4. В общем случае Z = Z (A): абсолютная погрешность измерения будет равна , где определяет степень зависимости Z от А в интересующей нас точке.







Дата добавления: 2014-12-06; просмотров: 732. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия