КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО
- доказательство, в котором истинность тезиса устанавливается путем показа ошибочности противоположного ему допущения. При прямом доказательстве задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис. В К. д. рассуждение идет как бы окольным путем. Прямые аргументы для выведения из них доказываемого положения не отыскиваются. Вместо этого формулируется антитезис, отрицание этого положения, и тем или иным способом показывается его несостоятельность. Поскольку К. д. использует отрицание доказываемого положения, оно называется также доказательствомотпротивного. Напр., врач, убеждая пациента, что тот не болен малярией, может рассуждать так: «Если бы действительно была малярия, имелся бы ряд характерных для нее симптомов, в частности общая слабость и озноб. Однако таких симптомов нет. Значит, нет и малярии». К. д. проходит, таким образом, следующие этапы: выдвигается антитезис и из него выводятся следствия с намерением найти среди них ложное; устанавливается, что в числе следствий действительно есть ложное; делается вывод, что антитезис неверен; из ложности антитезиса делается заключение, что тезис является истинным. В зависимости от того, как устанавливается ложность антитезиса, можно выделить несколько вариантов К. д. Иногда ложность антитезиса удается установить простым сопоставлением вытекающих из него следствий с фактами, эмпирическими данными. Так, в приведенном примере рассуждение идет по схеме: если неверно первое, то второе; но второе неверно, значит, верно первое. Нередко анализ самой логической структуры следствий антитезиса позволяет сделать вывод, что он ошибочен. Так, если в числе следствий встретились и утверждение, и отрицание одного и того же, можно сразу заключить, что антитезис неверен. Ложным будет он и в том случае, если из него выводится внутренне противоречивое высказывание о тождестве утверждения и отрицания. Напр., для доказательства тезиса «Квадрат — это ромб с прямыми углами» выдвигается антитезис: «Неверно, что квадрат есть ромб с прямыми углами». Из последнего выводится как то, что у квадрата все углы прямые (т. к. быть квадратом значит иметь четыре прямых угла), так и то, что у квадрата углы не являются прямыми. Раз из антитезиса вытекает и утверждение, и отрицание одного и того же, значит, он неверен, а правильным является противоположное утверждение - тезис. Рассуждение здесь идет в соответствии с законом косвенного доказательства: если из отрицания высказывания вытекает логическое противоречие, само высказывание истинно. Существует разновидность К. д., когда прямо не приходится искать ложных следствий антитезиса. Согласно закону Клавия, если из отрицания высказывания вытекает это высказывание, оно является истинным. Напр., из отрицательного высказывания «Ни одно суждение не является отрицательным» вытекает: «Некоторые суждения являются отрицательными»; значит, истинно это утвердительное высказывание, а не исходное отрицательное. К. д. — эффективное средство обоснования выдвигаемых положений. Однако его специфика в определенной мере ограничивает сферу применения. Эта специфика состоит в том, что из антитезиса, являющегося ложным, выводятся следствия до тех пор, пока не будет получено ложное утверждение или логическое противоречие. Имея дело с К. д., приходится все время сосредоточиваться не на верном положении, справедливость которого необходимо обосновать, а на ошибочных утверждениях. Более серьезные возражения против К.д. связаны с использованием в нем закона (снятия) двойного отрицания. Этот закон не признается универсальным, неограниченно приложимым интуиционистской логикой. КРУГ В ДОКАЗАТЕЛЬСТВЕ (лат. - circulus in demonstrando) — логическая ошибка в доказательстве, заключающаяся в том, что истинность доказываемого положения (тезиса) обосновывается с помощью аргумента, истинность которого обосновывается с помощью доказываемого тезиса. Данную ошибку называют также «порочным кругом». В качестве примера можно привести доказательство конечности и ограниченности Вселенной, приводившееся противниками учения Коперника. Защитники геоцентризма доказывали конечность Вселенной, опираясь на утверждение о том, что Вселенная в течение суток совершает полный оборот вокруг неподвижного центра, совпадающего с центром Земли. В свою очередь, истинность этого аргумента они доказывали, опираясь на утверждение о конечности Вселенной, т. к. при условии ее бесконечности нельзя понять, каким образом бесконечная Вселенная могла бы в течение одних суток совершить полный оборот около своего центра. Иными словами, тезис (положение о конечности мира) доказывался посредством аргумента (суточное вращение мира вокруг центра), который сам доказывался при помощи доказываемого тезиса (положения о конечности мира). В относительно коротких рассуждениях К. в д. сравнительно нетрудно обнаружить. Однако в доказательствах, включающих в себя длинные цепи умозаключений, круг может остаться незамеченным. Доказательство, содержащее в себе круг, не достигает своей основной цели — оно не обосновывает истинности доказываемого тезиса.
|