КАТЕГОРИЧЕСКОЕ СУЖДЕНИЕ
(в традиционной логике) -суждение, в котором предикат утверждается или отрицается относительно субъекта без формулирования к.-л. условий и при этом исключаются к.-л. альтернативные предикаты. К.с. имеют вид: «S есть (не есть) Р» и относятся к классу простых суждений. К. с. обычно противопоставляются условным и разделительным суждениям. КАТЕГОРИЯ (от греч. kategoria - высказывание, обвинение, признак) — предельно общее фундаментальное понятие, отражающее наиболее существенные, закономерные связи и отношения реальной действительности и познания. Будучи формами и устойчивыми организующими принципами процесса мышления, К. воспроизводят свойства и отношения бытия и познания во всеобщем и наиболее концентрированном виде. Характеристику некоторых особенностей К. можно дать, опираясь на операцию обобщения понятий. Почти для каждого видового понятия можно найти более широкое по объему родовое понятие, напр. «береза» — «дерево», «человек» - «млекопитающее», «медь» - «металл». Эти родовые понятия могут включаться в еще более широкие по объему понятия: «дерево» - «растение», «млекопитающее» — «животное», «металл» - «вещество» и т. п. К К. относятся предельно широкие по своему объему понятия, т. е. те, для которых нельзя найти более широкие родовые понятия. Как правило, К. являются философские понятия — «бытие», «субъект», «сущность», «качество», «количество», «материя», «сознание» и т. п. В каждой конкретной науке имеется своя система К. В логике к числу наиболее общих и фундаментальных понятий относятся понятия логического вывода, суждения, умозаключения, индукции, дедукции и др. К. изменяются вместе с развитием нашего познания: обогащается их содержание, изменяются взаимосвязи между К., меняется их состав и т. п. КЛАСС, МНОЖЕСТВО (В ЛОГИКЕ И МАТЕМАТИКЕ) - конечная или бесконечная совокупность объектов, выделенная по общему для них признаку (свойству или отношению), мыслимая как нечто целое. Объекты, составляющие К., называются его элементами. Примером К. (м.) могут быть следующие: «реки России», «четные числа». Первый К. является конечным, второй - бесконечным. Элементами первого К. являются отдельные реки — Волга, Ока, Енисей и др. Элементами второго К. являются числа - 0, 2, 4, 6, 8 и т. д. до бесконечности. Элементами К. могут быть, в свою очередь, К. Так, элементами К. «типы животных» являются К. простейших животных, губок, кишечнополостных и т. д. К. бывают единичными, общими и нулевыми(пустыми). Единичные К. состоят из одного элемента (напр., «самая большая река в Европе»); общие К. состоят из двух и более элементов (напр., «химический элемент», «машина»); нулевые К. не включают в свой состав ни одного элемента (напр., «круглый квадрат», «число меньше двух и больше трех»). Объект определенной области принадлежит данному К., является его элементом, если он обладает признаками, по которым образован К. В противном случае он исключается из К. Так, если нам дана область натуральных чисел и мы хотим выделить те из них, которые являются элементами К. простых чисел, то в К.. простых чисел войдет, напр., число 7, т. к. оно обладает свойством простых чисел («7 — простое число» — истина), а число 8 не войдет (т. к. «8 — простое число» — ложь). Образуя К. к.-л. объектов, мы начинаем их рассматривать лишь под углом зрения некоторых свойств, от иных же свойств абстрагируемся. Так, образуя К. квадратов, мы учитываем такие свойства плоских многоугольников, как «быть четырехугольником», «иметь равные углы», «иметь равные стороны». Площадь, длина сторон и т. п. не учитываются. Это означает, что отдельные квадраты, составляющие К.квадратов, отождествляются нами, становятся неразличимыми в некоторых свойствах (см.: Абстракция). Общее понятие о К. возникает как результат абстракции не только от природы его элементов, но и от их порядка.
|