ОПРЕДЕЛЕНИЕ АКСИОМАТИЧЕСКОЕ
- неявное определение понятия путем указания множества аксиом, в которые оно входит наряду с другими понятиями. Аксиома представляет собой утверждение, принимаемое без доказательства. Совокупность аксиом какой-то теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который определяет все входящие в нее понятия. Напр., аксиомы геометрии Евклида являются тем ограниченным по своему объекту текстом, в котором встречаются понятия точки, прямой, плоскости и т. д., определяющим значения данных понятий. Аксиомы классической механики Ньютона задают значения понятий «масса», «сила», «ускорение» и др. Положения «Сила равна массе, умноженной на ускорение», «Сила действия равна силе противодействия» не являются явными определениями. Но они раскрывают, что представляет собой сила, указывая связи этого понятия с другими понятиями механики. О. а. является частным случаем определения контекстуального. Принципиальная особенность О. а. заключается в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания входящих в него понятий. Он ограничен по своей длине, а также по своему составу. В нем есть все необходимое и нет ничего лишнего. О. а. — одна из высших форм научного определения понятий. Не всякая научная теория способна определить свои исходные понятия аксиоматически. Для этого требуется относительно высокий уровень развития знаний об исследуемой области; изучаемые объекты и их отношения должны быть также сравнительно просты. Точку, линию и плоскость Евклиду удалось определить с помощью немногих аксиом еще две с лишним тысячи лет назад. Но попытка охарактеризовать с помощью нескольких утверждений такие сложные, многоуровневые объекты, как общество, история или разум, не может привести к успеху. Аксиоматический метод здесь неуместен, он только огрубил бы и исказил реальную картину. ОПРЕДЕЛЕНИЕ ГЕНЕТИЧЕСКОЕ (от греч. genesis - происхождение, источник) — классическое, или родо-видовое, определение, в котором спецификация определяемого предмета осуществляется путем указания способа его образования, возникновения, получения или построения. Напр.: «Окружность есть замкнутая кривая, описываемая концом отрезка прямой, вращаемого на плоскости вокруг неподвижного центра». О. г. отличаются большой эффективностью и часто встречаются в различных инструкциях и наставлениях, имеющих целью научить ч.-л. ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие, - определение, в котором предметы определяемого понятия вводятся в объем более широкого понятия и при этом с помощью отличительных признаков (видовое отличие) выделяются среди предметов этого более широкого понятия. Примерами О. к. могут быть: «Ромб есть плоский четырехугольник, у которого все стороны равны» (1), «Лексикология есть наука, изучающая словарный состав языка» (2). В О. к. (1) ромб (определяемый предмет) вводится сначала в класс плоских четырехугольников (род), а затем при помощи специфицирующего признака «иметь равные стороны» (видовое отличие) выделяется среди других плоских четырехугольников, отличается от них. В определении (2) определяемый предмет вводится в класс наук (род), а затем посредством указания специфицирующего признака «изучать словарный состав языка» (видовое отличие) выделяется среди других наук, которые не обладают этим признаком. В отличие от О. к. (1), объем определяемого понятия в О. к. (2) представляет класс, состоящий лишь из одного элемента (см.: Класс, Множество в логике). Многие научные и повседневные определения принимают форму О. к. В отличие от повседневных, в научных О. к. (если речь идет об опытных науках) видовое отличие всегда должно представлять собой существенный признак. По отношению именно к О. к. (или к тем, которые могут быть интерпретированы как О. к.) формулируются известные правила (см.: Определение). Родо-видовые отношения играют большую роль не только в О. к., но и при делении понятий и в классификациях, где процесс деления родового понятия на составляющие его виды играет важную роль. Поэтому o.k. или определения через род и видовое отличие часто в логике называют классификационными.
|