Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения. 7.1. Запишите по правилам алгоритмического языка выражения: a) e) б)





7.1. Запишите по правилам алгоритмического языка выражения:

a) e)
б) ж)
в) з)
г) и)
д) к)


[ Ответ ]

7.2. Запишите в обычной математической форме арифметические выражения:

а) a / b ** 2; б) a+b/c+1; в) 1/a*b/c; г) a**b**c/2; д) (a**b)**c/2; е) a/b/c/d*p*q; ж) x**y**z/a/b; з) 4/3*3.14*r**3; и) b/sqrt(a*a+b); к) d*c/2/R+a**3; л) 5*arctg(x)-arctg(y)/4; м) lg(u*(1/3)+sqrt(v)+z); н) ln(y*(-sqrt(abs(x)))); о) abs(x**(y/x)-(y/x)**(1/3)); п) sqrt((x1-x2)**2+(y1-y2)**2); р) exp(abs(x-y))*(tg(z)**2+1)**x; c) lg(sqrt(exp(x-y))+x**abs(y)+z); т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2; у) sqrt(sin(arctg(u))**2+abs(cos(v))); ф) abs(cos(x)+cos(y))**(1+sin(y)**2);


[ Ответ ]

7.3. Вычислите значения арифметических выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(10000);
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;

б) sign(sqrt(sqrt(x+15)))*2**2**2;
в) int(-2.1)*int(-2.9)/int(2.9)+x;
г) -sqrt(x+3)**2**(sign(x+0.5)*3)+tg(0);
д) lg(x)+cos(x**2-1)*sqrt(x+8)-div(2, 5);
е) sign(x-2)*sqrt(int(4.3))/abs(min(2, -1));
ж) div(10, x+2)*mod(10, x+6)/max(10, x)*mod(2, 5).
[ Ответ ]

7.4. Запишите арифметические выражения, значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c > 0) и полупериметром p;
Ответ: sqrt(p*(p-a)*(p-b)*(p-c));

б) среднее арифметическое и среднее геометрическое чисел a, b, c, d;
в) расстояние от точки с координатами (x, y) до точки (0, 0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра равна а);
е) радиус описанной сферы куба (длина ребра равна а);
ж) координаты точки пересечения двух прямых, заданных уравнениями
a1x+b1y+c1=0 и a2x+b2y+c2=0 (прямые не параллельны).
[ Ответ ]

7.5. Вычислите значения логических выражений:
а) x*x+y*y< =9 при x=1, y=-2
Ответ: да;

б) b*b-4*a*c< 0 при a=2, b=1, c=-2;
в) (a> =1) и (a< =2) при a=1.5;
г) (a< 1) или (a> 1.2) при a=1.5;
д) (mod(a, 7)=1) и (div(a, 7)=1) при a=8;
е) не ((a> b) и (a< 9) или (а*а=4)) при a=5, b=4.
[ Ответ ]

7.6. Запишите логические выражения, истинные только при выполнении указанных условий:
а) x принадлежит отрезку [ a, b ]
Ответ: (x> =a) и (x< =b);

б) x лежит вне отрезка [ a, b ];
в) x принадлежит отрезку [ a, b ] или отрезку [ c, d ];
г) x лежит вне отрезков [ a, b ] и [ c, d ];
д) целое k является нечетным числом;
е) целое k является трехзначным числом, кратным пяти;
ж) элемент ai, j двумерного массива находится на пересечении нечетной строки и четного столбца;
з) прямые a1x+b1y+c1=0 и a2x+b2y+c2=0 параллельны;
и) из чисел a, b, c меньшим является с, а большим b;
к) среди чисел a, b, c, d есть взаимно противоположные;
л) среди целых чисел a, b, c есть хотя бы два четных;
м) из отрезков с длинами a, b, c можно построить треугольник;
н) треугольники со сторонами a1, b1, c1 и a2, b2, c2 подобны;
о) точка с координатами (x, y) принадлежит внутренней области треугольника с вершинами A (0, 5), B (5, 0) и C (1, 0);
п) точка с координатами (x, y) принадлежит области, внешней по отношению к треугольнику с вершинами A (0, 5), B (1, 0) и C (5, 0);
р) четырехугольник со сторонами a, b, c и d является ромбом.
[ Ответ ]

7.7. Начертите на плоскости (x, y) область, в которой и только в которой истинно указанное выражение. Границу, не принадлежащую этой области, изобразите пунктиром.

а) (x< =0) и (y> =0) Ответ: е) ((x-2)**2+y*y< =4) и (y> x/2) Ответ:
б) (x> =0) или (y< =0) в) x+y> =0 г) (x+y> 0) и (y< 0) д) abs(x)+abs(y)> =1 ж) (x*x+y*y< 1) и (y> x*x); з) (y> =x) и (y+x> =0) и (y< =1); и) (abs(x)< =1) и (y< 2); к) (x**2+y**2< 4) и (x**2+y**2> 1);


[ Ответ ]

7.8. Запишите логическое выражение, которое принимает значение " истина" тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.


[ Ответ ]

7.9. Пусть a =3, b =5, c =7. Какие значения будут иметь эти переменные в результате выполнения последовательности операторов:
а) a: =a+1; b: =a+b; c: =a+b; a: =sqrt(a)
Решение: a =3+1=4, b =4+5=9, c =4+9=13, a = {корень квадратный из} 4 =2.
Ответ: а =2, b =9, c =13;
б) с : =a*b+2; b: =b+1; a: =c-b**2; b: =b*a;
в) b: =b+a; c: =c+b; b: =1/b*c;
г) p: =c; c: =b; b: =a; a: =p; c: =a*b*c*p;
д) c: =a**(b-3); b: =b-3; a: =(c+1)/2*b; c: =(a+b)*a;
е) x: =a; a: =b; b: =c; c: =x; a: =sqrt(a+b+c+x-2);
ж) b: =(a+c)**2; a: =lg(b**2)**2; c: =c*a*b.
[ Ответ ]

7.10. Задайте с помощью операторов присваивания следующие действия:
а ) массив X=(x1, x2) преобразовать по правилу: в качестве x1 взять сумму, а в качестве х2 — произведение исходных компонент;
Решение: c: =x[1]; x[1]: =x[1]+x[2]; x[2]: =c*x[2]
б) поменять местами значения элементов массива X=(x1, x2);
в) в массиве A(N) компоненту с номером i (1< i< N) заменить полусуммой исходных соседних с нею компонент, соседнюю справа компоненту заменить на нуль, а соседнюю слева компоненту увеличить на 0.5;
г) u = max(x, y, z) + min(x-z, y+z, y, z);
[ Ответ ]

7.11. Задайте с помощью команд если или выбор вычисления по формулам:

a)
б)
в) где
г)
д)
е)
ж) если точка лежит внутри круга радиусом r (r> 0) с центром в точке (a, b) в противном случае


[ Ответ ]

7.12. Постройте графики функций y(x), заданных командами если:

а) если x< =-1то y: =1/x**2иначе если x< =2то y: =x*xиначе y: =4все все в) если x< -0.5то y: =1/abs(x)иначе если x< 1то y: =2иначе y: =1/(x-0.5)все все
Решение г) если x< 0то y: =1иначе если x< 3.14то y: =cos(x)иначе y: =-1все все
б) если x< -5то y: =-5иначе если x< 0то y: =xиначе если x< 3то y: =2*xиначе y: =6все все все д) если abs(x)> 2то y: =x*xиначе если x< 0то y: =-2*xиначе если x> =1то y: =4иначе y: =4*x*x все все все


[ Ответ ]

7.13. Определите значение целочисленной переменной S после выполнения операторов:

а) S: =128 нц для i от 1 до 4 S: =div(S, 2) кц Решение
i S
   
  128/2=64
  64/2=32
  32/2=16
  16/2=8

Ответ: S=8

г) S: =0нц для i от 1 до 2нц для j от 2 до 3 S: =S+i+jкц кц Решение
i j S
     
    0+1+2=3
    3+1+3=7
    7+2+2=11
    11+2+3=16

Ответ: S=16

б) S: =1; a: =1 нц для i от 1 до 3 S: =S+i*(i+1)*a a: =a+2 кц д) нц для i от 1 до 3 S: =0 нц для j от 2 до 3 S: =S+i+j кц кц
в) S: =1; a: =1 нц для i от 1 до 3 S: = S+i нц для j oт 2 до 3 S: = S+j кц кц е) нц для i от 1 до 2 S: = 0 нц для j oт 2 до 3 нц для k oт 1 до 2 S: = S+i+j+k кц кц кц


[ Ответ ]

7.14. Определите значение переменной S после выполнения операторов:

а) i: =0; S: =0 нц пока i< 3 i: =i+1; S: =S+i*i кц г) S: =0; N: =125 нц пока N> 0 S: =S+mod(N, 10) | S — сумма цифр N: =div(N, 10) | числа N кц
Решение
Условие i < 3 i S
     
0 < 3? да   0+12=1
1 < 3? да   1+22=5
2 < 3? да   5+32=14
3 < 3? нет(кц)    

Ответ: S=14

Решение
Условие N > 0 S N
     
125 > 0? да 0+5=5 12
12 > 0? да 5+2=7 1
1 > 0? да 7+1=8 0
0 > 0? нет (кц)    

Ответ: S=8

б) S: =0; i: =1 нц пока i> 1 S: =S+1/i i: =i-1 кц д) а: =1; b: =1; S: =0; нц пока a< =5 a: =a+b; b: =b+a; S: =S+a+b кц
в) S: =0; i: =1; j: =5 нц пока i< j S: =S+i*j i: =i+1 j: =j-1 кц е) a: =1; b: =1 нц пока a+b< 10 a: =a+1 b: =b+a кц S: =a+b


[ Ответ ]

7.15. Составьте алгоритмы решения задач линейной структуры (условия этих задач заимствованы из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика " Основы информатики и вычислительной техники", 1989):

а) в треугольнике известны три стороны a, b и c; найти (в градусах) углы этого треугольника, используя формулы:

С=180o-(А+В).

Пояснение. Обратите внимание на то, что стандартные тригонометрические функции arccos и arcsin возвращают вычисленное значение в радианной мере.
Решение:

алг Углы треугольника(арг вещ a, b, c, рез вещ UgolA, UgolB, UgolC) нач вещ RadGr, UgolARad | RadGr — коэф. перевода угла из радианной меры в градусную | UgolARad — угол A (в радианах) RadGr: =180/3.14 UgolARad: =ArcCos((b*b+c*c-a*a)/(2*b*c)) UgolA: =UgolARad*RadGr UgolB: =ArcSin(b*sin(UgolARad)/a)*RadGr UgolC: =180-(UgolA+UgolB) кон

б) в треугольнике известны две стороны a, b и угол C (в радианах) между ними; найти сторону c, углы A и B (в радианах) и площадь треугольника, используя формулы:


с2 = a2 + b2 - 2ab cos C.

Пояснение. Сначала нужно найти сторону c, а затем остальные требуемые значения;

в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы:

где

г) в правильной треугольной пирамиде известны сторона основания a и угол A (в градусах) наклона боковой грани к плоскости основания; найти объем и площадь полной поверхности пирамиды, используя формулы:

V=Socн· H/2;
где
     

д) в усеченном конусе известны радиусы оснований R и r и угол A (в радианах) наклона образующей к поверхности большего основания; найти объем и площадь боковой поверхности конуса, используя формулы:

где
     

e) в правильной четырехугольной пирамиде сторона основания равна a, а боковое ребро наклонено к плоскости основания под углом A; найти объем и площадь полной поверхности пирамиды и площадь сечения, проходящего через вершину пирамиды и диагональ основания d; использовать формулы:


[ Ответ ]

7.16. Составьте алгоритм решения задач развлетвляющейся структуры:

а) определить, является ли треугольник с заданными сторонами a, b, c равнобедренным;
Решение:

алг Треугольник(арг вещ a, b, c, рез лог Otvet) дано | a> 0, b> 0, c> 0, a+b> c, a+c> b, b+c> a надо | Otvet = да, если треугольник равнобедренный | Otvet = нет, если треугольник не равноведренный нач если (a=b) или (a=c) или (b=c) то Otvet: = да иначе Otvet: = нет всекон

б) определить количество положительных чисел среди заданных чисел a, b и c;

в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;

г) числа a и b — катеты одного прямоугольного треугольника, а c и d — другого; определить, являются ли эти треугольники подобными;

д) даны три точки на плоскости; определить, какая из них ближе к началу координат;

е) определить, принадлежит ли заданная точка (x, y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2;

ж) упорядочить по возрастанию последовательность трех чисел a, b и c.
[ Ответ ]

 


 







Дата добавления: 2014-12-06; просмотров: 1038. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия