Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Множества





Понятие множества принадлежит к числу фундаментальных понятий математики.

Определение 1 Под множеством S будем понимать любую совокупность определенных и различимых между собой объектов, мыслимых как единое целое. Эти объекты называются элементами множества S.

Определение 2. Множеством называют совокупность объектов, объединенных некоторым свойством. Объекты, входящие в множество, называются элементами множества.

Обычно множества обозначают прописными буквами латинского алфавита: A, B, C, …; а элементы множеств – строчными буквами: a, b, c, ….

Если объект х является элементом множества М, то говорят, что х принадлежит М: хÎ М. В противном случае говорят, что х не принадлежит М: хÏ М.

Пример 1. Множество студентов, присутствующих на лекции; множество четных чисел и т. д.

Определение 2. Множество А называется подмножеством множества В, если всякий элемент из А является элементом В. Если А является подмножеством В и В не является подмножеством А, то говорят, что А является строгим (собственным) подмножеством множества В.

В первом случае используется обозначение , во втором случае− .

Определение 3. Множество, не содержащее элементов, называется пустым и обозначается через Æ, оно является подмножеством любого множества. Множество U такое, что любое множество являются его подмножеством, называется универсальным.

Определение 4. Множества А и В считаются равными, если они состоят из одних и тех же элементов, пишут А=В, А¹ В – в противном случае.

Очевидно, что множества А и В равны, если

Способы задания множеств:

§ перечислением элементов: М={a1, a2, …, ak}, т. е. списком своих элементов;

§ характеристическим предикатом: М={x | P(x)}(описанием характеристических свойств, которыми должны обладать его элементы);

§ порождающей процедурой: M={ x | x=f}, которая описывает способ получения элементов множества из уже полученных элементов либо других объектов. В таком случае элементами множества являются все объекты, которые могут быть построены с помощью такой процедуры. Например, множество всех целых чисел, являющихся степенями двойки.

Замечание. Характеристический предикат – это некоторое условие, выраженное в форме логического утверждения или процедуры, возвращающей логическое значение. Если для данного элемента условие выполнено, то он принадлежит определяемому множеству, в противном случае – не принадлежит. Порождающая процедура – это процедура, которая, будучи запущенной, порождает некоторые объекты, являющиеся элементами определяемого множества.







Дата добавления: 2014-12-06; просмотров: 667. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия