Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнение 5. Найдите главную логическую константу в каждой из следующих формул





 

Найдите главную логическую константу в каждой из следующих формул.

1. Ú q) Ù r É р Ù r;

2. р Ù Ø q É r º р É ( Ø q É r);

3. ((p É q) É q) É q;

4. Ø (Ø р Ú р).

 

Построим таблицу истинности для формулы р Ú q É Ø q. В таблице под главной константой формулы будем писать истинностные значения формулы в целом. В этой формуле главной логической константой является знак импликации. Чтобы установить истинностные значения всей формулы, необходимо установить истинностные значения подформул, составляющих ее, т.е. формул р Ú q и Ø q. Истинностные значения этих формул будем соответственно писать под логическими константами Ú и Ø. В результате получим таблицу истинности:

 

 

p q р Ú q É Ø q
и и и л л
и л и и и
л и и л л
л л л и и

 

 

Проанализируем первую строку таблицы. В первой строке пропозициональные переменные р и q имеют значение и. Чтобы установить истинностное значение формулы в целом, следует установить истинностные значения подформул р Ú q и Ø q. При значении и переменных р и q р Ú q имеет значение и, при значении и переменной q формула Ø q имеет значение л, что видно из таблиц истинности для дизъюнкции и отрицания, приведенных выше.

 

p q р Ú q É Ø q
и и и л

 

Оказывается, антецедент формулы в целом, являющейся импликацией, имеет значение и, а консеквент — л. В приведенной выше таблице для импликации в этом случае импликация имеет значение л:

 

p q р Ú q É Ø q
и и и л л

 

Можно упростить построение таблиц истинности, если значения пропозициональных переменных писать под переменными, входящими в саму формулу.

В приведенном выше табличном определении отрицания всего две строки, а в определениях для конъюнкции, дизъюнкции, импликации и эквивалентности — по четыре строки. Как установить число строк в таблице в общем случае, т.е. как установить, сколько может быть различных возможных наборов значений переменных, входящих в формулу?

Число строк в таблице истинности определяется по следующей формуле: число строк таблицы = 2n, где п — число различных пропозициональных переменных, входящих в формулу, а число 2 показывает число истинностных значений (и, л).

Учитывая сказанное, построим таблицу истинности для формулы:

É (q É r)) É ((р É q) É É r)).

Формула содержит три различные переменные. Следовательно, число строк в таблице = 2n, 23=8. Разделим число строк пополам и напишем под первой пропозициональной переменной (первой слева) в столбик четыре раза и и четыре раза л:

É (q É r)) É ((р É q) É É r)).

и

и

и

и

л

л

л

л

 

Каждую половину всех строк, т.е. в данном случае каждые четыре строки, в свою очередь разделим пополам и напишем под второй по вхождению слева пропозициональной переменной, отличной от первой пропозициональной переменной, в обеих половинах строк два раза и и два раза л:

É (q É r)) É ((р É q) É É r)).

и и

и ___ и_______________________

 

и л

и___ л_______________________

л и

л ___ и________________________

л л

л л

 

Разделим, далее, половину каждой половины пополам и под третьей по вхождению слева переменной, отличной от первых двух переменных, напишем и, если эта часть (строка) нечетная при пересчете сверху вниз, или л, если часть (строка) четная:

и

É (q É r)) É ((р É q) É É r)).

и и __ и_____________________

и____ и__ л_____________________

и

и л ___ и_____________________

и____л__ л_____________________

л и __ и_____________________

л____ и___л_____________________

л л___ и_____________________

л л л

Деление производится до тех пор, пока полученная в результате деления часть не будет состоять из одной строки.

Одна и та же переменная может входить в формулу несколько раз. В одной и той же строке под всеми вхождениями одной и той же переменной пишется одно и то же значение, т.е. для завершения построения таблицы истинности следует под каждым вторым (третьим и т.д.) вхождением переменной написать те же значения, что и под первым вхождением этой переменной.

É (q É r)) É ((р É q) É É r)).

и и___и___и___и___и___и

и___ и___л___и___и___и___л

и л___и___и___л___и___и

и___л___л___и___л___и___л

л и___и___л___и___л___и

л___ и___л___л___и___л___л

л л___и___л___л___л___и

л л л л л л л

Несложно завершить построение таблицы истинности:

É (q É r)) É ((р É q) É É r)).

и и и и и и__и_и_и_и__и_и_и

и л и__л_л__и__и_и_и_л__и_л_л

и и л и и и__и_л_л_и__и_и_и

и_и__л__и_л__и__и_л_л_и__и_л_л

л и и и и и__л_и_и_и__л_и_и

л и и__л_л__и__л_и_и_и__л_и_л

л и л и и и__л_и_л_и__л_и_и

л и л и л и л и л и л и л

Эта формула имеет значение “истина” при каждом наборе значений входящих в нее переменных.

Формула, принимающая значение “истина” при любом наборе значений входящих в нее переменных, называется тождественно-истинной, или законом логики, или общезначимой.

Формула, принимающая значение “ложь” при любом наборе значений входящих в нее переменных, называется тождественно-ложной, или противоречием.

Формула, принимающая значение “истина” хотя бы при некоторых наборах значений переменных, называется выполнимой.

 







Дата добавления: 2014-10-22; просмотров: 737. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия