Умозаключения по логическому квадрату. ? ®ù О; ù А ® О; Е ® ù I;ù Е ®I.
Учитывая свойства отношений между категорическими суждениями А, Е, I, О, которые иллюстрированы схемой логического квадрата1, можно строить выводы, устанавливая следование истинности или ложности одного суждения из истинности или ложности другого суждения. Рассмотрим эти выводы. Отношение противоречия (контрадикторности): А — О, Е — I. Поскольку отношения между противоречащими суждениями подчиняются закону исключенного третьего, из истинности одного суждения следует ложность другого суждения, из ложности одного — истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность частноотрицательного суждения (О) «Некоторые народы не имеют права на самоопределение»; из истинности частноутвердительного суждения (I) «Некоторые приговоры суда являются оправдательными» следует ложность общеотрицательного суждения (Е) «Ни один приговор суда не является оправдательным». Выводы строятся по схемам: А ®ù О; ù А ® О; Е ® ù I; ù Е ®I. Отношение противоположности (контрарности): А — Е. Из истинности одного суждения следует ложность другого суждения, но из ложности одного из них не следует истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность общеотрицательного суждения (Е) «Ни один народ не имеет права на самоопределение». Но из ложности суждения А «Все приговоры суда являются оправдательными» не следует истинность суждения Е «Ни один приговор суда не является оправдательным». Это суждение также ложно. Отношения между противоположными суждениями подчиняются закону непротиворечия. Выводы строятся по схемам: А®ù Е; Е ®ù А; ù А®(Е vù Е); ù Е®(А v ù А). Отношение частичной совместимости (субконтрарности): I — О. Из ложности одного суждения следует истинность другого, но из истинности одного из них может следовать как истинность, так и ложность другого суждения. Истинными могут быть оба суждения. Например, из ложного суждения «Некоторые врачи не имеют медицинского образования» следует истинное суждение «Некоторые врачи имеют медицинское образование»[29], из истинного суждения «Некоторые свидетели допрошены» следует суждение «Некоторые свидетели не допрошены», которое может быть как истинным, так и ложным. Таким образом, субконтрарные суждения не могут быть вместе ложными; по крайней мере одно из них истинно. Выводы строятся по схемам: ù I® О; ù О ® I; I ® (О vù О); O®(I v ù I). Отношение подчинения (А — I, E — О). Из истинности подчиняющего суждения следует истинность подчиненного суждения, но не наоборот: из истинности подчиненного суждения истинность подчиняющего суждения не следует, оно может быть истинным, но может быть ложным. Например, из истинности подчиняющего суждения А «Все врачи имеют медицинское образование» следует истинность подчиненного ему суждения I «Некоторые врачи имеют медицинское образование». Из истинного подчиненного суждения «Некоторые свидетели допрошены» нельзя с необходимостью утверждать об истинности подчиняющего суждения «Все свидетели допрошены». Выводы строятся по схемам: А ® I; Е ® О; I ®(A v ù A); O®(E vù E). Из ложности подчиненного суждения следует ложность подчиняющего суждения, но не наоборот: из ложности подчиняющего суждения ложность подчиненного с необходимостью не следует; оно может быть истинным, но может быть и ложным. Например, из ложности подчиненного суждения (О) «Некоторые народы не имеют права на самоопределение» следует ложность подчиняющего суждения (Е) «Ни один народ не имеет права на самоопределение». Если ложным является подчиняющее суждение (А) «Все свидетели допрошены», то подчиненное ему суждение (I) «Некоторые свидетели допрошены» может быть истинным, но может быть ложным (возможно, что ни один свидетель не допрошен). Выводы строятся по схемам: ù I ® ù А; ù О®ù Е; ù A ®(I v ù I); ù Е®(О v ù О); Знание зависимости истинности или ложности одних суждений от истинности или ложности других помогает делать правильные выводы в процессе рассуждения. Умозаключения по логическому квадрату находят применение во многих мыслительных приемах и операциях, в том числе в аргументации, где построение некоторых способов косвенного доказательства и косвенного опровержения опирается на отношения противоречия.
|