Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

От концентрации фермента и концентрации субстрата





Зависимость скорости реакции от концентрации фермента и концентрации субстрата (кинетика ферментативных реакций) представлена на графиках.

график 1 график 2

 

В ферментативной реакции выделяют скорости трёх составляющих этапов:

  1. образование фермент-субстратного комплекса FS;
  2. обратный распад фермент – субстратного комплекса;
  3. распад фермент-субстратного комплекса с образованием продуктов реакции.

Скорость каждой из этих реакций подчиняется закону действующих масс:

V1 = К1 · [F] · [S]

V2 = K2 · [FS]

V3 = K3 · [FS]

В момент равновесия скорость реакции образования FS равна сумме скоростей его распада: V1=V2+V3. Из трёх этапов ферментативной реакции наиболее важным и медленным является третий, так как он связан с образованием продуктов реакции. По приведенной выше формуле найти скорость V3 невозможно, так как фермент- субстратный комплекс очень неустойчив измерение его концентрациизатруднено. В связи с этим, Михаэлис-Ментен ввели Кm – константу Михаэлиса и преобразовали уравнение для измерения V3 в новое уравнение, в котором присутствуют реально измеримые величины:

 

 

или

 

[F0] – исходная концентрация фермента;

Кm – константа Михаэлиса.

Физический смысл Кm: Кm = (К23) /К1. Она показывает соотношение констант скоростей распада фермент-субстратного комплекса и константы скорости его образования.

Уравнение Михаэлиса-Ментен является универсальным. Оно иллюстрирует зависимость скорости реакции от [F0] от [S].

1. Зависимость скорости реакции от концентрации субстрата. Эта зависимость выявляется при малых концентрациях субстрата [S]< Km. В этом случае концентрацией субстрата в уравнении можно пренебречь и уравнение приобретает вид: . В данном уравнении K3, [F0], Km – константы и могут быть заменены новой константой К*. Таким образом, при малой концентрации субстрата скорость реакции прямо пропорциональна этой концентрации V3 = K* · [S]. Эта зависимость соответствует первому участку графика 2.

2. Зависимость скорости от концентрации фермента проявляется при высокой концентрации субстрата. S ≥ Km. В этом случае можно пренебречь Km и уравнение преобразуется в следующее: . Таким образом, при высокой концентрации субстрата скорость реакции определяется концентрацией фермента и достигает максимального значения V3 = K3[F0]=Vmax. (третий участок графика 2).

3. Позволяет определить численное значение Km при условии . В этом случае уравнение приобретает вид:

, откуда следует, что Km=[S]

Таким образом, Кm численно равна концентрации субстрата при скорости реакции, равной половине максимальной. Кm является очень важной характеристикой фермента, она измеряется в молях (10-2 – 10-6 моль) и характеризуют специфичность фермента: чем ниже Km, тем выше специфичность фермента.

Графическое определение константы Михаэлиса.

Удобнее использовать график, представляющий прямую линию. Такой график предложен Лайнуивером – Берком (график двойных обратных величин), который соответствует обратному уравнению Михаэлиса - Ментен

.

 







Дата добавления: 2014-10-22; просмотров: 751. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия