Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Электронная орбиталь





 

Наиболее наглядно вероятность нахождения электрона в пространстве характеризует функция распределения электронной плотности (вероятность нахождения электрона в элементарном объеме пространства). Для атома водорода таким элементарным объемом пространства является сферический слой толщиной dr (рис.1.8), а зависимость вероятности нахождения электрона в нем от расстояния до ядра – функция радиального распределения электронной плотности.

Вероятность нахождения электрона в элементарном сферическом слое

dP = Y2× dV = Y2× 4p r 2 dr.

Радиальное распределение электронной плотности– зависимость плотности вероятности () от радиуса – равно:

s(r) = = Y 2× 4p r2 = .

Вероятность нахождения электрона в сфере радиусом r

.

 
 

 

 


Рис. 1.8. Элементарный сферический слой: dV = 4p r 2 dr - объем сферического слоя

 

Какие выводы можно сделать из функции радиального распределения электронной плотности для основного состояния атома водорода (рис. 1.9)?

s(r)

Рис. 1.9. Радиальное распределение электронной плотности - s(r). Вероятность нахождения электрона в сфере радиусом r - [ Р (r)].

 

1. Функция s(r) имеет максимум при r = 1/ a = 0, 53 Å. На этом расстоянии от ядра максимальна вероятность нахождения электрона. Необходимо отметить, что это расстояние совпадает с радиусом первой орбиты по теории Бора. Оно находится из условия равенства нулю первой производной функции радиального распределения:

,

, .

2. Функция радиального распределения – вероятность нахождения электрона в элементарном объеме пространства – асимптотически стремится к нулю при увеличении расстояния от ядра (при r ®¥ s(r)®0), но не становится равной нулю. При этом вероятность нахождения электрона в сфере Р (r) с увеличением радиуса сферы асимптотически приближается к единице, но не становится равной единице ни на каком расстоянии. Поэтому точно указать объем пространства, в котором вероятность нахождения электрона равна единице, невозможно, как невозможно и указать, в какой точке пространства находится электрон в данный момент. Поэтому указывается объем пространства, в пределах которого вероятность нахождения электрона составляет величину 0, 9 (90%). Данная область пространства называется орбиталью электрона, в отличие от орбиты в классической теории. Для основного состояния атома водорода радиус орбитали составляет величину r =1, 41Å.

 







Дата добавления: 2014-10-22; просмотров: 1742. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия