Физико-химические характеристики атома
Физико-химические характеристики атома, такие как энергия ионизации, энергия сродства к электрону, электроотрицательность, атомные и ионные радиусы, позволяют объяснять и предсказывать некоторые химические свойства элементов. Эти характеристики закономерно изменяются с ростом заряда ядра атомов и подобны для элементов с повторяющимися электронными структурами. 1. Радиус атома и иона. Поскольку атомы и ионы не имеют четкой геометрической границы, невозможно выделить и измерить отдельный атом. Эти характеристики рассчитывают исходя из предположения, что атомы и ионы в соединениях, кристаллах и т.д. представляют собою твердые шары, которые упакованы плотнейшим образом. Ковалентный радиус – половина экспериментально определяемого расстояния между ядрами двух одинаковых атомов, образовавших простую ковалентную молекулу (рис. 1.20). Пример. Длина химической связи (расстояние между ядрами атомов) в молекуле H2 составляет величину r св= 0, 74 Ǻ, следовательно, ковалентный радиус равен: .
Ионный радиус рассчитывают из экспериментально определяемых параметров кристаллической решетки, но расчет более сложен, так как размеры катионов и анионов разные. Общие закономерности: · в периоде радиус атома уменьшается (увеличение заряда ядра приводит к сжатию орбиталей). В группе радиус увеличивается с увеличением числа электронных слоев (рис. 1.21); · катион по сравнению с атомом имеет меньший радиус, а анион больший: . Пример.
2. Энергия ионизации (E и) – энергия, которую необходимо приложить к нейтральному невозбужденному атому для удаления электрона на бесконечность: А0 – е ® А+.
Рис. 1.21. Зависимость атомного радиуса от заряда ядра
Энергия ионизации в многоэлектронном атоме может быть определена для каждого электрона. Первая энергия ионизации – удаление электрона из нейтрального атома, вторая – отрыв электрона от однозарядного иона и т. д. Теоретически сколько электронов в атоме, столько и энергий ионизации: (Е и) n +1 > (Е и) n. Энергия ионизации характеризует энергию связи электрона в атоме. Общие закономерности изменения первой энергии ионизации элементов: · в периоде энергия ионизации увеличивается, но не монотонно. Атомы, имеющие полностью или наполовину заполненные энергетические состояния, имеют большее значение энергии ионизации, электрон связан сильнее; · в группе энергия ионизация падает вследствие увеличения радиуса атома и соответственно уменьшения энергии связи (рис. 1.22). Рис. 1.22. Зависимость первой энергии ионизации атомов от заряда ядра
Экспериментально энергия сродства к электрону определена примерно для 20 элементов, расположенных в основном в правой верхней части периодической таблицы. Для остальных элементов приводятся расчетные величины (термодинамические или квантово-механические расчеты). В периоде энергия сродства к электрону увеличивается, а в группе уменьшается, хотя эти закономерности выглядят не так явно, как для энергии ионизации (рис. 1.23).
Рис. 1.23. Зависимость энергии сродства к электрону от заряда ядра атомов
4. Электроотрицательность – это характеристика элемента, показывающая способность атома притягивать к себе электронную плотность при образовании химической связи с другим элементом. Она позволяет оценивать вероятность распределения электронной плотности в молекулах химических соединений. Чем больше разница величин электроотрицательности атомов, образующих химическую связь, тем больше сдвигается электронная плотность к атому с большим значением электроотрицательности. Разработано несколько способов оценки электроотрицательности атомов. Величина электроотрицательности атомов в различных шкалах может существенно различаться, поэтому сравнение величин необходимо проводить в одной шкале. Наиболее распространенными способами оценки электроотрицательности атомов являются следующие. 1. Электроотрицательность по Малликену (Mulliken) – полусумма энергии ионизации и энергии сродства к электрону: . Данный метод имеет наиболее ясный физический смысл, поскольку в основу его положены экспериментально определяемые величины, характеризующие связь электрона с атомом. Однако употребление электроотрицательностей по Малликену ограничено из-за трудности получения достоверных значений энергии сродства к электрону для большинства элементов. 2. Электроотрицательность по Полингу (Pauling). Наибольшее распространение получила термохимическая шкала электроотрицательностей, разработанная Полингом. В данном методе электроотрицательность атомов А и В определяют исходя из энергии связи в молекулах А-В, А-А и В-В. В основу шкалы относительных значений электроотрицательностей положена электроотрицательность фтора, условно принятая равной 4, 0 (cF = 4, 0). Ниже приведены значения электроотрицательностей атомов элементов первого-третьего периода по Малликену и Полингу:
Анализ этих данных показывает, что общие закономерности изменения электроотрицательности элементов в группах и периодах Периодической системы не зависят от способа их определения. А именно: электроотрицательность в периоде растет, а в группе уменьшается. Максимальной электроотрицательностью обладают элементы, расположенные в правом верхнем углу (фтор, кислород, азот, хлор), минимальной – в левом нижнем углу (цезий, рубидий, барий) периодической таблицы.
|