Студопедия — Метод валентных связей (ВС)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод валентных связей (ВС)






 

Основы метода ВС разработали в 1927 г. Гайтлер (Heitler) и Лондон (London). Модельной частицей для этого метода является молекула водорода Н2. При построении волновой функции молекулы в методе валентных связей считается, что: 1) атомы в молекуле сохраняют свою индивидуальность – каждый электрон принадлежит ядру своего атома, 2) известны волновые функции электронов атома А (YА) и атома В (YВ) –атомные орбитали, 3) считается, что частицы (электроны и ядра атомов) неразличимы.

Уравнение Шредингера для молекулы водорода. Составим уравнение Шредингера для молекулы водорода. Входящая в него потенциальная энергия включает в себя сумму энергий электростатического взаимодействия всех частиц между собой (двух электронов и двух ядер). Из рис. 2.3 видно, что суммарная потенциальная энергия складывается из двух положительных членов: энергии отталкивания электронов и ядер между собой и четырех отрицательных – энергий притяжения электронов к ядрам:

,

где r AB; r 12 - расстояния между ядрами атомов А и В и между первым и вторым электронами; r A1; r A2 – расстояния между ядром атома А и первым и вторым электронами соответственно; r B1; r B2 расстояния между ядром атома В и первым и вторым электронами соответственно.

 
 

 


Рис. 2.3. Схема электростатического взаимодействия электронов и ядер в молекуле водорода

Таким образом, уравнение Шредингера для молекулы водорода имеет вид

Аналитическое решение данного уравнения практически невозможно, поэтому нахождение энергии химической связи D E (r) и волновой функции электронов, показывающей распределение электронной плотности в молекуле, производят приближенным методом.

Функция первого приближения. Поскольку вероятность нахождения электрона в элементарном объеме пропорциональна Y-функции, а по условиям метода ВС атомы при образовании связи сохраняют свои атомные орбитали, то в первом приближении функция, описывающая состояние электронов в молекуле водорода, может быть представлена как произведение волновых функций электронов в отдельных изолированных атомах водорода (суммарная вероятность двух независимых событий равна произведению вероятности каждого из них):

,

где Y1 – функция, описывающая состояния электронов в молекуле водорода; YА(1) – функция, описывающая состояния электрона 1, принадлежащего атому А (Y1s – функция основного состояния атома водорода); YВ(2) функция, описывающая состояния электрона 2, принадлежащего атому В (Y1s).

Поскольку электроны и ядра атомов принципиально неразличимы, то безразлично, какой из них будет находиться у определенного ядра. Поэтому необходимо составить и вторую функцию:

.

Первая функция рассматривает 1 электрон как принадлежащий атому А, а 2 – атому В, вторая функция, наоборот, считает, что 2 электрон принадлежит атому А, а 1 – атому В. Обе функции являются решениями уравнения Шредингера. Для простоты изложения нормировочные множители приняты равными единице.

Расчет с использованием этих функций качественно правильно описывал молекулу водорода, но величины энергии и длины связи сильно отличались от величин, определенных экспериментально.

Более точным приближением к истинной волновой функции явилась линейная комбинация первой и второй функции:

,

.

 

Физический смысл этих двух функций заключается в следующем: Y Sсимметричная функция – соответствует случаю, когда электроны в молекуле водорода имеют разные значения спинового квантового числа, – спины электронов антипараллельны. YАантисимметричная функция – описывает состояние, когда оба электрона имеют одинаковое значение спинового числа – спины электронов параллельны.

Изменение энергии системы двух взаимодействующих атомов водорода описывается выражением

– для симметричной функции,

– для антисимметричной функции,

Q – «кулоновский интеграл», характеризующий изменение энергии системы вследствие электростатического взаимодействия электронов и ядер между собой. I – «обменный интеграл», интеграл, характеризующий понижение энергии системы вследствие неразличимости электронов; S – «интеграл перекрывания», характеризующий изменение энергии системы вследствие перекрывания атомных орбиталей.

Для выяснения физического смысла этих интегралов проанализируем их выражения.

«Интеграл перекрывания»

характеризует область пространства перекрывания атомных орбиталей.

«Кулоновский интеграл»

показывает изменение энергии системы в результате отталкивания ядер друг от друга (первый член суммы), электронов (второй член) и притяжения электронов к ядрам «несвоего атома» (третий и четвертый члены). Последние два интеграла равны между собой, поскольку атомы одинаковы. Физический смысл интегралов очевиден: yi2 dVj – вероятность нахождения j -электрона в элементарном объеме пространства, e × yi2 dVj – величина заряда. Согласно закону Кулона энергия электростатического взаимодействия прямо пропорциональна произведению величины зарядов и обратно пропорциональна расстоянию между ними.

Энергия притяжения электронов к ядрам «своего атома» – энергия невзаимодействующих атомов (E 0) – в энергии химической связи не учитывается (полная энергия молекулы водорода E = 2× E 0+D E (r)).

«Обменный интеграл»

,

S – «интеграл перекрывания».

«Обменный интеграл» похож на «кулоновский», но вместо квадрата волновой функции для данного электрона стоит произведение волновых функций разных атомов, что придает ему достаточно абстрактный характер - «неклассическое электростатическое взаимодействие». Энергия системы изменяется вследствие неразличимости электронов, то есть возможность замены одного электрона на другой приводит к изменению энергии системы.

На расстояниях r ®¥ кулоновский, обменный интегралы и интеграл перекрывания стремятся к нулю: Q ®0, I ®0 и S ®0. На расстояниях, близких к длине связи, кулоновский и обменный интегралы отрицательны Q < 0; I < 0, причем ½ Q ½ < ½ I ½; при r ®0 они становятся положительными. Интеграл перекрывания всегда положителен и меньше единицы: 0£ S < 1.

В случае симметричной функции (спины электронов антипараллельны) в зависимости D E (r) существует минимум (потенциальная яма), а электронная плотность между атомами возрастает – химическая связь образуется, молекула устойчива (рис. 2.4).

 
 

Рис. 2.4. Зависимость изменения энергии молекулы и распределение электронной плотности в молекуле водорода в случае описания системы симметричной (YS) и антисимметричной функцией (YA)

 

В случае антисимметричной функции (спины электронов параллельны) минимум в зависимости D E (r) отсутствует, электронная плотность между ядрами равна нулю – связь не образуется.

Пример. Энергия и длина связи в молекуле водорода, определенные экспериментально и рассчитанные с учетом различных факторов:

 

  Энергия связи, эВ Длина связи, Ǻ
Эксперимент....................................... 4, 747 0, 741
Функции Y1s× Y1s................................. 0, 25 0, 9
Функции YS YA................................. 3, 14 0, 869
С учетом сжимаемости атомов......... 3, 76 0, 743
С учетом поляризации атомов.......... 4, 02 0, 749
С учетом ионности связи.................. 4, 10 0, 740
13 членов Y-функции........................ 4, 72 0, 740
50 членов Y-функции........................ 4, 7467 0, 74127

 

На основе представлений, выработанных при расчете молекулы водорода, сформулированы основные принципы (постулаты)метода валентных связей, позволяющие описывать образование ковалентной химической связи в более сложных молекулах:

1. Единичная химическая связь образуется общей парой электронов с противоположными (антипараллельными) спинами.

2. Общая электронная пара локализована (сосредоточена) между атомами в направлении максимального перекрывания атомных орбиталей.

3. Энергия связи определяется только силами электростатического взаимодействия электронов и ядер и зависит от величины перекрывания орбиталей.

Таким образом, число связей (валентность), которые может образовывать атом, определяется числом неспаренных электронов на внешнем энергетическом уровне атома в основном или возбужденном состоянии. Ковалентная связь обладает свойством насыщенности (атом может образовывать ограниченное число единичных ковалентных связей). Ковалентная химическая связь обладает свойством направленности (расположение в пространстве общей электронной пары определяется пространственной ориентацией атомных валентных орбиталей). Атомы взаимно располагаются таким образом, чтобы перекрывание валентных орбиталей было максимальным. Из двух связей та прочнее, где перекрывание валентных орбиталей больше.

 







Дата добавления: 2014-10-22; просмотров: 1658. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия