Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Трение скольжения





Для определения коэффициента трения в данной работе используется метод наклонного маятника (рис. 13.1). Шарик или брусок, подвешенные в точке О, опираются на наклонную плоскость, угол наклона которой к горизонту b можно изменять. Если отклонить маятник от положения равновесия на угол a0, то он начнет совершать затухающие колебания. В результате за n колебаний угол отклонения уменьшится до значения . Затухание колебаний происходит главным образом под действием внешнего трения.

а б

Рис. 13.1

Коэффициент трения скольжения равен отношению силы трения к силе реакции опоры N (которая, согласно III закону Ньютона, всегда равна силе нормального давления , прижимающей тело к опоре)

. (13.1)

В рассматриваемом случае (рис. 13.1а) сила реакции опоры по модулю равна составляющей силы тяжести , направленной перпендикулярно плоскости

, (13.2)

где m – масса маятника, g – ускорение свободного падения.

Сила трения может быть найдена с помощью закона сохранения энергии. Согласно которому работа, совершенная силой трения за n колебаний, равна изменению потенциальной энергии тела за то же число колебаний

, (13.3)

где – работа силы трения, S – расстояние, пройденное телом за n колебаний, – изменение потенциальной энергии тела за то же число колебаний, D h – изменение высоты тела вследствие затухания колебаний.

С учетом формул (13.2) и (13.3) формула (13.1) принимает вид

. (13.4)

Далее, из рис. 13.1б видно, что

, (13.5)

где – расстояние между начальным и конечным положениями тела, отсчитанное по наклонной плоскости.

Подставив (13.5) в (13.4), получим для коэффициента трения скольжения формулу

. (13.6)

Теперь осталось выразить величины и через величины, измеряемые на опыте: число колебаний и углы отклонения маятника от положения равновесия и . Рис. (13.2) поясняет, как это можно сделать.

На рисунке изображены три положения тела: положение равновесия D, начальное положение F, соответствующее отклонению на угол , и конечное положение E, соответствующее отклонению на угол . Из рис. 13.2 видно, что . и можно представить через длину нити маятника L и углы его отклонения от положения равновесия. Действительно, из треугольника EOE ¢ следует, что , а из треугольника FOF¢ – . Итак,

.

Если учесть, что при малых углах то можно представить в виде

. (13.7)

 

Путь S, пройденный телом, можно найти, руководствуясь следующими соображениями. За одно полное колебание тело проходит расстояние, равное четырем амплитудам 4 A. За n колебаний пройденный путь S = 4 nA. Но амплитуда вследствие затухания изменяется от начального значения А 0, равного дуге DF, до конечного значения A n, равного дуге DE, поэтому надо взять ее среднее значение. Из рис. 13.2б видно, что А 0 » a0 L, а A n » an L (здесь углы выражены в радианах), следовательно, среднее значение амплитуды равно L (a0 + an)/2. Итак,

. (13.8)

Подставив (13.7) и (13.8) в (13.6), получим формулу для расчета коэффициента трения скольжения в данной работе

. (13.9)







Дата добавления: 2014-10-29; просмотров: 900. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия