Студопедия — Годовое изменение параметров Земли
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Годовое изменение параметров Земли






 

Прежде чем перейти к поэлементному расчету изменения параметров Земли отмечу еще раз, что в соответствии с принципом инвариантности, внешние и внутренние параметры планеты определяются ее положением на орбите. Последнее обусловливает одинаковую пропорциональную взаимосвязь внешних и внутренних свойств, что позволяет производить расчеты параметров одной системы по «комплексным» («смешанным») инвариантам. Под смешанными инвариантами понимаются уравнения, включающие как внешние параметры, например, скорость движения планеты по орбите, так и внутренние параметры, например, массу или радиус Земли. В качестве примера приведу инвариант с указанными параметрами:

Мз ∕ vз = Б, (4.11)

где: Мз масса Земли, а vз – ее орбитальная скорость.

Или другие инварианты:

Rn2gn = Rnv2 = В, (4.12)

RnМп2 = Г, и т.д. (4.13)

где: Rn орбитальный радиус в n- й день, gn – напряжённость гравитационного поля Земли (ускорение свободного падения на поверхности планеты) в тот же день, v – первая орбитальная скорость у поверхности Земли, Б, В, Г – инварианты.

В закон всемирного тяготения И. Ньютона входят m, М, Rз, G и F. В соответствии с принципом инвариантности все они должны изменяться при движении планеты вокруг светила. Диаграммы изменения скорости планеты и радиуса орбиты определены (графики 14 и 15). Теперь, опираясь на них, найдем по инвариантам (4.11)-(4.13) изменение параметров m, М, Rз, G и F. Начнем с расчета ежедневного изменения массы Земли.

Для корректного расчета изменения массы необходимо определиться с тем, на какой временной период приходится известная на сегодня величина массы равная Мз = 5, 978∙ 1027 г. Естественно предположить, что требуемую массу планета может иметь тогда, когда она находится в той области времени, в которой на графике 15 совпадают радиусы орбит, полученные по расчету инвариантов и по таблице эфемерид. И все известные параметры планеты Мз, Rз, Gз, g и т.д. следует отнести к одному из этих дней.

Вырежем фрагменты гр а фика 15 в окрестностях пересечения радиусов, полученных по таблице эфемерид – ряд 1 и по инварианту (4.4) – ряд 2, и посмотрим, на какие числа приходятся даты пересечения;

На графиках 17 и 18 показаны фрагменты диаграммы годового изменения радиусов орбит исполненные по (4.3) и по таблице эфемерид. На этих фрагментах диаграммы пересекаются в двух точках: 30-го сентября 2005 г. и 6-го апреля 2006 г. Место пересечения показывает, что в эти дни расстояние

 

График17. График18.

от планеты до Солнца по эфемеридам лаборатории реактивного движения и по инвариантному расчету будут близки к совпадению. И, следовательно, все числовые параметры планеты для обеих диаграмм будут примерно одинаковыми. Примем массу Земли на 6 апреля равной Мз = 5, 978∙ 1027 г. и определим диаграмму её изменения за год.

Массу можно определить по нескольким инвариантам.

По изменению скорости на орбите:

Мn/vn = const1. (4.14)

По изменению расстояния до Солнца:

RnMn2 = const. (4.15)

По неизменности момента количества движения µ:

RnvnMn = µ = const. (4.16)

И т.д.

Результаты всех расчетов по этим инвариантам будут тождественны.

Предположим, что масса Мn рассчитывается по инварианту (4.11); тогда равенство расстояний приходится на 6 апреля 2006 г. и величина инварианта равна:

Мn/vn = 2, 0123583·1021 гсек/см. (4.17)

Преобразуя (4.11) относительно Мп имеем:

Мn = 2, 0123583·1021· vn,

и найдя, по изменению скорости движения, количественную величину массы Земли на каждый день года (приложение 2 столбец Мз), строим диаграмму изменения массы Мn (график 19).

Диаграмма Мn аналогична диаг-рамме изменения скорости движения планеты по орбите. Она свидетель-ствует о том, что масса Земли пуль-сирует с месячной и годовой частотой, изменяясь за полугодие в пределах: минимум ~ 5, 893·1027 г. на 24.06.2005 г., максимум 6, 09711027 г. на 01.01.2006 г.

График 19. Т.е. изменение величины массы наблюдается даже в первом знаке. Разница между максимумом и минимумом массы Землисоставляет ~2, 049·1026 г. Это почти в три раза больше принятой на сегодня массы Луны равной Мл = 7, 35·1025 г.

Аналогично рассчитываем изменение радиуса Rз планетыв течение года, используя различные инварианты. Например:

RзМз2 – const. (4.18)

Или,

Rзn vn2 – const1, И т.д.

Для нахождения величины радиуса орбиты планеты на каждый день года используем инвариант (4.15):

RзnМзn2 = 2, 279·1064.

Полученные результаты занесем в приложение 2 диаграмма Rз и построим на графике 19 диаграмму R. Диаграмма R показывает, что радиус Земли уменьшается одновременно с возрастанием ее массы. Констатируем: согласно расчетам минимальный радиус Rз ≈ 6, 1497 тыс. км. Земля имела 1 января 2006 г. Максимальным радиус Земли пришелся на 10 июля 2006 г. и составил Rз ≈ 6, 5848 тыс. км. Амплитуда колебания радиуса ~ 435 км, Таким образом, теоретические параметры самопульсации Земли оказываются достаточно весомыми, и не могут не влиять на режим функционирования планеты и в первуюочередь погоды на ней.

Для расчета диаграммы изменения «постоянной» тяготения Gn можно также применить несколько инвариантов.

Gnvn = const2 (4.19)

Gn2∕ Rn = const3 = Д, И т.д. (4.20)

Для минимизации расчетов, употребим только один из них, например (4.20), причем радиусом в нем можно использовать как орбитальный радиус Rn, так и радиус Земли Rзn, естественно, что принимаются параметры по численной величине на 6 апреля 2006 г.:

Gn2∕ Rзn = Д = (6, 672·10-6)2∕ 6, 378·108 = 6, 97955·10-20. (4.21)

Преобразовав (4.21) относительно Gn получаем:

Gn = √ ДRn. (4.22)

И решив уравнение (4.22) на каждый день года, занесем полученные результаты в график 19, и получим диаграмму G изменения гравитационной «постоянной».

Таким образом, модули всех трех параметров Мn, Rзn,, и Gn оказываются синусоидально изменяемыми. Причем два из них, радиус и масса Земли изменяются в противофазе изменению гравитационной «постоянной».

Расчет силы «притяжения» можно производить по двум уравнениям:

по уравнению (а):

Fn = GnmnMn/Rn2 = Рn,

и по уравнению (б):

Fn = mngn.

И то, и другое уравнение предполагает «неизменность» веса тела на некоторой поверхности во времени. И в том и в другом уравнении также присутствует «неиз-менная» масса некоего пробного тела. В качестве пробного тела в данной работе используем свинцовый цилиндр весом на 6 апреля 2006 года 202, 9 гр. Для получения силы притяжения Fn, например, по(б) необходимо знать изменение напряженности гравиполя График 20.планеты gn и массы mn на каждый день года. Напряжённость гравитационногополя (ускорение свободного падения) можно определить по инварианту:

R2g = А = 2, 2014∙ 1027 см3∕ сек2.

Рассчитаем изменение напряженности g и отобразим его на графике 20:

Напряженность гравитационного поля меняется за год от 9, 22·102 см3⁄ сек2 до 10, 55·102 см3⁄ сек2 в январе, т.е. на 1, 33·102 см3⁄ сек2.

Осталось определиться с силой притяжения тела к Земле F и с его массой m. Силу притяжения также можно определять по нескольким инвариантам:

FRз (4.23)

F2Rз5= Ж и т.д.

Определимся, например, с количе- График 21. ственной величин инварианта (4.23):

FRз2G = Е = 5, 4916·1012.

И, рассчитав параметр Fn на каждый день года, построим диаграмму графика 21. Диаграмма показывает, что вес свинцового цили-ндра изменяется с 187, 33 грамма на 01.07.05 г. до 212, 61 грамма на 01.01.06 г., т.е. на 25, 28 гр.

Однако весы отображают величину практически на два порядка меньше. Это следствие одновременного уменьшения параметров всех тел под воздействием изменения гравиполя Земли (через массу эталонного тела).

Определим массу пробного тела исходя из параметров Земли на 6 апреля 2006 года:

m = Р⁄ g = 0, 20683 гр.,

и по инварианту (4.15):

vn⁄ mn = 1, 440874 = const1,

определим количественную величину mn на каждый день года с 01.07.05 до 01.07.06. Диаграмма графика 22 показывает, что изменение массы пробного тела за год аналогично изменению массы Земли ( график 19.) и силы при-тяжения Землей пробного тела (график 22.).Отмечу, что на графиках12-15отображены теоретические изменения параметров Земли, кото-рые при эмпирическом рассмотрении График 22. взаимодействия конкретных тел могут давать результаты, значительно отличающиеся от теоре-тических. Это обусловлено тем, что процесс измерения веса любого тела осуществляется опосредованно через некоторое промежуточное тело, илипружину, со свойствами, изменяющимися при изменении внешнего гравиполя.

 

4.4. Орбитальные пульсации Земли

 

Эту небольшую публикацию из сборника [66] с тем же названием, я привожу без изменения как при­мер орбитальной самопульсации Земли и Луны, совер­шенно не касаясь механики их движения в свете изло­женных выше электродинамических взаимодействий и с добавлением, тезисно, некоторых короткопериодических пульсаций земных сфер.

Траектории механического орбитального движения небесных тел Солнечной системы, в частности Земли и Луны, теоретически рассчитываются не по полевым уравнениям, как это делается, например, в электродина­мике, а достаточно искусственными методами возму­щающих движений. А потому правомерен вопрос: По­чему полевые методы теории гравитации практически не находят применения при расчете орбитального дви­жения планет?

Опуская рассмотрение методов возмущения как дос­таточно известных, попробую определить причины, обусловливающие отступление от полевых методов рас­чета орбит небесных тел на примере орбитального дви­жения планеты Земля.

Из классической механики известно, что планета Зем­ля движется по «инерции» на орбите в гравитационном поле Солнца со средней скоростью vcp = 29, 76 км/с, имея в перигелии скорость vp = 30, 27 км/с, а в афелии va = 29, 27 км/с [57]. В 1995 г. по эфемеридам расстояние в перигелии от центра Солнца до Земли составляло Rp = 1, 471·1013 см, а в афелии Ra = 1, 521·1013 см, при среднем расстоянии Rcp = 1, 4961013 см [108].

Воспользовавшись этими данными, определяем рас­четную напряженность гравиполя g на расстоянии, со­ответствующем этим точкам по формуле:

gn = vn2/Rn. (4.24)

И получаем, что в перигелии напряженность gp = 0, 62391 см/с2, в афелии ga = 0, 56328 см/с2, a gcp = 0, 59202 см/с2.

Зная напряженность (ускорение свободного падения) гравиполя Солнца gc = 2.738·104 см/с2, его радиус Rc = 6, 96·1010 см и закон убывания напряженности — инва­риант (4.25):

Rс2gc = 1, 3263·1026 - const, (4.25)

определяем для тех же областей пространства теорети­ческую напряженность гравитационного поля, созда­ваемую Солнцем. Она равна в перигелии gp1 = 0, 61296 см/с2, в афелии ga1 = 0, 57332 см/с2 и только в начале ап­реля и в октябре в моменты пересечения с расчетной, оказывается близкой к ней. Различие расчетных и теоре­тических параметров напряженности гравитационного поля уже во втором знаке (и, в частности, у Луны тоже) становится основной причиной затруднений при ис­пользовании полевых методов в расчете орбитального движения небесных тел. На диаграмме 1 графика 23 сплошной ли­нией 1отображено ежедневное расчетное изменение на­пряженности гравиполя в 1995 г., построенное по траек­тории движения Земли. Линия 2показывает реальную напряженность гравиполя на том же расстоянии от Солнца, на

График 23

котором планета находится в соответствую­щий день. И, как явствует из диаграммы, наибольшая расчетная напряженность наблюдается в перигелии. За­тем, по мере увеличения расстояния от Солнца до Зем­ли, она, практически монотонно, убывает, сравниваясь с теоретической в начале апреля, и, продолжая убывать, достигает афелия в начале июля. В точке афелия проис­ходит перелом, и расчетная напряженность начинает возрастать, достигая средней величины в начале октября и максимума — в новом перигелии.

Фигура, образуемая этими двумя сходящимися ли­ниями, несколько напоминает полураскрытые ножницы. Угол между линиями 1 и 2 является основным препятст­вием применения полевых гравитационных уравнений. Никакого объяснения расхождению расчетной и теоре­тической напряженности мне обнаружить не удалось. И, по-видимому, современная небесная механика пренеб­регает этими ножницами, ограничиваясь при расчете траектории движения небесных тел уже упомянутым методом возмущений. К тому же классическая механика оставляет неизменными все параметры планет на про­тяжении всего их движения по орбите. А это может ока­заться одним из факторов, сдерживающих сближение теоретической и расчетной напряженностей.

Попробую, основываясь на принципах русской меха­ники, рассмотреть отдельные аспекты возможного из­менения параметров Земли при орбитальном движении.

Прежде всего, русская механика предполагает зависи­мость всех параметров движущегося тела от скорости его движения. И надо ожидать, что с возрастанием ско­рости v при движении планеты к перигелию или с ее уменьшением будет наблюдаться изменение радиуса R, гравитационной «постоянной» G, массы т, напряженно­сти гравитационного поля g и т.д. Поэтому, рассматри­вая на диаграмме 1 фактическую напряженность грави­тационного поля (линия 7) и зная, что она образуется радиусом и скоростью (4.24), необходимо определить форму связи этих внешних параметров с параметрами Земли. Например, с массой или гравитационной «посто­янной». И хотя бы предварительно определиться, будут ли они изменяться при движении планеты и каким образом.

Однако на любые изменения массы в классической механике, как уже говорилось, до сего дня наложено аб­солютное табу. Она постулируется неизменной всегда. Допускаются ее изменения только при скоростях, близ­ких к скорости света, которая, как известно, несопоставима с орбитальными скоростями, а потому при орби­тальных скоростях масса планеты меняться не может.

На изменение гравитационной «постоянной» G нало­жено табу помягче. Ее изменения допускаются. Более того, его ищут экспериментально и постоянно находят, но объяснение этому изменению в классической меха­нике еще нет.

В русской механике неизменные свойства отсутству­ют. Все свойства тел, в том числе и масса, и гравитаци­онная «постоянная» с изменением внешних условий ме­няют свою количественную величину. И потому, рассматривая медленное, почти монотонное ежедневное изменение линии 7 диаграммы 1, можно предположить, что и скорость на орбите, и расстояние от Солнца до планеты, и длина радиуса, и ее масса изменяются моно­тонно, а какая-то их совокупность остается неизменной и описывает соответствующую кривую. Задача заключа­ется в том, чтобы выделить из этой совокупности часть изменения, относящегося, например, к массе.

Классическая механика, как и русская, содержит урав-­
нение, которое включает в себя и массу т, и скорость v,
и радиус l. Это уравнение количества движения М:

M = mvl - const. (4.26)

И по законам классической механики, и по законам
русской механики (добавлю и по законам электродинамики, и квантовой механики) момент количества движе-ния, при свободном вращении или движении по орбите, всегда остается неизменным. То есть в приложении кдвижению планеты по орбите момент М по закону не может изменяться. Поскольку и в правой и в левой части
уравнения (4.26) имеются как бы неизменные величины
М и т, то его можно привести к виду:

М/т = vl - const. (4.27)

И оно будет таким при инерционном движении плане­ты по окружности, но не по эллипсу. При движении по эллипсу, как явствует из диаграммы 1 графика 23, произведение vl ≠ const, а значит и М/т ≠ const. И остается предполо­жить, что в движении по орбите меняется либо момент М, либо масса т. Поскольку момент «охраняется» зако­ном, в обеих механиках, а масса алогичным постулатом и только в одной, логично будет рассмотреть, изменяется ли масса планеты и по какому закону при ее движе­нии по орбите.

Можно, конечно, предположить, что в уравнении (4.26) меняется момент, а масса остается неизменной, или масса и момент изменяются в некоторой пропорции. Но из данных предположений следует, что изменения эти могут происходить только при некоторой форме взаимодействия движущейся планеты с окружающим пространством. Что конечно правильно и соответствует русской механике, но совершенно неприемлемо для ме­ханики классической.

В качестве точки отсчета для нахождения М было взя­то 4 апреля 1995 г., время, когда расчетная и теоретиче­ская напряженности сравниваются и, следовательно, скорость v = 2, 9763·106 см/с, массу т = 5, 978·1027 г и расстояние l = 1, 4966·1013 см можно было принять за первичные исходные величины. В результате постоян­ная величина момента количества движения Земли по орбите оказалась равной М = 2, 6628·1047 г.см/с. (Еже­дневное расстояние до Солнца на 12 часов находим по эфемеридам [108], среднесуточную скорость определяем по [109]).

Зная величину количества движения М, преобразовы­ваем уравнение (6.19) относительно массы т:

m = M/Rv. (4.28)

Подставляя последовательно с 1 января 1995 г. в фор­мулу (4.28) ежедневную скорость и расстояние от цен­тра Солнца до центра Земли, определяем изменение ко­личественной величины массы на каждый день года и строим на графике 23 диаграмму 3. Она показывает, что масса планеты Земля, даже при относительно незначительном изменении скорости ее движения, систематически меняется в третьем-пятом знаке в пульсирующем режиме. Амплитуда колебания массы от максимума до минимума длится

около месяца, и масса изменяется от 5, 972·1027 г до 5, 982·1027 г. Изме­нение в третьем знаке происходит около раза в ме­сяц, четвертый и особенно пятый знак меняются почти ежедневно. Период одного колебания составляет около месяца и неравномерен по длительности. И в году укладывается 12 полных периодов (по результатам расчета 1994 — 1995 гг.).

Колебания переходят на следующий год таким образом, что помесячные максимумы преды­дущего года становятся минимумами последующего. Вместе с массой пропорционально пульсируют все ос­тальные параметры Земли, включая и гравитационную «постоянную» (линия 4). Именно это и фиксируется в работе [56]. Кроме того, просматривается общая для планеты волна с периодом около 12 месяцев, по-видимому, годовая (линия 6).

Пульсирующее изменение массы планеты сопровож­дается ежемесячным замедлением и ускорением ее дви­жения по орбите. И хотя относительное убывание и воз­растание скорости орбитального движения наблюдается почти на протяжении всего года, абсолютная, угловая скорость w на протяжении месяца то возрастает, то за­медляется, что и свидетельствует о пульсации планеты

Как было показано ранее, масса Земли может изме­няться только пропорционально гравитационной «по­стоянной» G по инварианту:

MG = 3, 998...·1020, (4.29)

где G = 6, 672·10-8 - гравитационная «постоянная».

Формула (4.29) обусловливает возможность ежеднев­ного нахождения параметра G. И по форме, и по величине гравитационная «постоянная» будет изменяться как обратное подобие изменения массы, что и наблюда­ется на диаграмме (линия 4). Следует еще раз отме­тить, что систематическое изменение G в третьем и чет­вертом знаках на протяжении полутора десятилетий фиксируется приборами [56]. Естественно, что приборы будут фиксировать не ту величину изменения гравита­ционной постоянной, которая отображена линией 4, а примерно такую, которую изображает линия 5. Аналогичным образом можно по инварианту:

M2R = 3, 5736 1056 - const1, (4.30)

определить амплитуду колебания радиуса Земли (диаг­рамма 5). И оказывается, что месячные измене­ния радиуса достигают почти 20 км (тот же третий знак) оставаясь для нас и наших приборов почти незаметны­ми. Как тут не вспомнить А. Пуанкаре [17]: «если бы все тела Вселенной начали одновременно и в одинаковой пропорции расширяться (или, например, пульсируя, сжиматься и расширяться — А. Ч.), то у нас не было бы никаких средств заметить это, потому что все наши измерительные инструменты увеличивались бы одно­временно с самими предметами, для измерения которых они служат. После этого расширения мир продолжал бы свой ход и ничто не говорило бы нам, что произошло столь важное событие». (Курсив мой — А. Ч.)

И хотя это утверждение Пуанкаре достаточно катего­рично, в первом линейном приближении его можно счи­тать верным и подтверждаемым почти полным отсутст­вием приборной информации о пульсации Земли.

Надо отметить, что кроме двух вышеназванных пе­риодов (годового и месячного) существует хорошо из­вестный еще с древности 84, 4-минутный период пуль­сации Земли — период Шулера [110], который накладывается на предыдущие и, по-видимому, имеет амплитуду колебания в пределах 1, 5 км (на графике 23 он не отображен).

Можно показать, основываясь на уравнении (4.28), что и Луна в процессе своего орбитального движения от пе­ригея до перигея за полный оборот вокруг Земли совер­шает один-два цикла пульсации. Не останавливаясь на анализе представленной диа­граммы, отмечу, что полученные результаты только каче­ственно свидетельствуют о наличии пульсации у небес­ных тел — планет и их спутников. Уточненные коли­чественные величины параметров пульсации могут быть получены только тогда, когда будут сведены к одной линии гравитационные ножницы — теоретическая и расчетная напряженности гравитационных полей в об­ласти орбитального движения Земли и Луны. Их нали­чие, по-видимому, более чем на порядок искажает кар­тину пульсации Луны и в несколько меньшей степени — Земли. И именно их наличие свидетельствует о недоста­точности нашего понимания сути гравитационных взаи­модействий.

Отмечу, что орбитальную пульсацию Земли и Луны, ускорение и торможение их в процессе движения, вызы­ваемые пульсацией, можно фиксировать многими физи­ческими, астрономическими и оптическими методами, различными гироскопическими, маятниковыми и грави­тационными приборами на поверхности Земли. В част­ности, из механических приборов наиболее чувстви­тельными к самопульсации Земли являются гироскопи­ческие прецессирующие приборы типа гироскопа Фесселя.

Выявление орбитальной пульсации небесных тел по­зволяет сделать следующие предварительные выводы:

• следует ожидать, что самопульсация Земли, как и других небесных тел, вызывает попеременное, с годовым, месяч­ным периодами и периодом Шулера, замедление и уско­рение своего движения по орбите.

М = тv2/w;

• ускорение и замедление Земли на периоде в год (го­довой период пульсации) - известны, и показаны ранее;

• экспериментальное доказательство регулярного ус­корения и торможения Земли с годовым, месячным и полуторача­совым периодом при движении по орбите будет очередным доказательством отсутствия в природе движения по инерции.

Кроме орбитальной пульсации с периодом от месяца и более у Земли и ее сфер наблюдаются короткопериодические пульсации от нескольких часов до десятков ми­нут и более продолжительные, охватывающие геологи­ческие эпохи в миллионы и миллиарды лет. Изучая эти временные периоды В.А. Марков в работе [69] делает вывод о том, что «любой конечный интервал времени представляет собой циклически организованный про­цесс, складывающийся из двух зеркально отраженных в пространстве времени модельно подобных полуциклов Т1 и Т2 с постоянным отношением длительности T1/T2 = 2/3».

Этот очень важный вывод он подтверждает как при­мерами из геологической шкалы времени, так и пульсационными процессами малой временной продолжитель­ности. Пропуская рассмотрение периодов и эпох гео­логического времени, остановлюсь на короткопериодических пульсациях и в первую очередь на периоде Шулера ti = 84, 4 мин. [110]: «Применительно к ti дели­мость в отношении 2/3 отражает пульсацию t1' и t1'' ос­новного тона или моды, отличающуюся от других соб­ственных колебаний наибольшей амплитудой. Ожи­даемые их значения ti' = 0, 6, или ti' = 50, 8 мин., и ti" = 0, 4 или ti" = 33.8 мин» — пишет В. Марков [69].

Опираясь на свойства неограниченной делимости не­однородного времени, В.А. Марков построил сетку дис­кретных значений (обертонов) спектра собственных ко­лебаний Земли с рядами, как он полагает, относительной длительности 1/3, 2/3, 1/2, отличающих структуру неод­нородного времени (матрица 5)

Матрица 5

          46, 22 30, 80 20, 54 13, 68
    78, 00 52, 00 34, 67 23, 11 15, 40 10, 27 6, 84
      26, 00 17, 33 11, 55 7, 70    
43, 84 29, 25 19, 50 13, 00 8, 67        
21, 92 14, 62 9, 75 6, 50          

 

В матрице за основную моду ti' = 52 мин. приняты пе­риоды пульсации (в минутах) подтвержденные грави­метрическими [111] и сейсмическими [112] измерения­ми. Следует отметить, что по более поздним источникам [113] аналогичная мода для литосферы Земли равна 56 минутам.

Матрица, полученная В.А. Марковым исходя только из временных периодов (которую он даже не назвал матрицей), удивительна тем, что является фрагментом поперечного слоя объёмной русской матрицы. Естест­венно, что формируется она несколько иначе, чем это записано В.А. Марковым и отображает природные вре­менные обертоны. Приведу фрагмент русской матрицы 6 для короткопериодической пульсации, приняв за осно­ву моду в ti' = 56, 00 мин.

В матрице 6 основные моды короткопериодических пульсаций 84, 00 мин., 56, 00 мин., 37, 33 мин. располага­ются по диагонали слева направо сверху вниз. (У В. Маркова основная мода расположена на горизонтали 78, 00 мин., 52, 00 мин., 34, 67 мин.)

Матрица 6

189, 0 252, 0 336, 0 448, 0 597, 3 796, 4  
94, 50 126, 0 168, 0 224, 0 298, 2 398, 2 531, 0
47, 25 63, 00 84, 00 112, 0 149, 3 199, 1 265, 5
23, 62 31, 50 42, 00 56, 00 74, 67 99, 55 132, 7
11, 81 15, 75 21, 00 28, 00 37, 33 49, 78 66, 37
5, 906 7, 875 10, 50 14, 00 18, 67 24, 89 33, 18
2, 953 3, 937 5, 250 7, 000 9, 333 12, 44 16, 59

Из матрицы 6 следует наличие еще одного полуцикла Т3 с отношением:

Т31 = 1/3,

о котором есть упоминание в [69]. И полный цикл, за­вершающий процесс:

Т2 + Т 3 = Т1,

есть не что иное, как элемент матричной вязи, опреде­ленный последовательностью расположения чисел на числовом поле: сумма двух последовательных верти­кальных чисел равна третьему числу, расположенному по диагонали справа налево от верхнего из них.

Можно констатировать вероятность того, что временные взаимосвязи физических параметров отображены в поперечных сло­ях русской матрицы.

 

4.5. Гравитационная линза Солнечной системы

 

Выше было показано, что расчет изменения радиуса орбиты по инварианту (4.4) выявляет иную, чем принято, величину афелия и перигелия и в результате изменения этих величин положение орбиты движения Земли относительно Солнца отличается от ныне принятого. Вот как выглядит на схеме это отличие (рис. 59.).

Таким образом, при рассмотрении таблиц эфемерид были обнаружены эмпирические явления, не описываемые классической механикой:

 
 

Рис. 59. Солнце - 1, оптическое восприятие орбиты Земли - 2, Земля в афелии и перигелии - 3, сплошная линия - истинная траектория планеты, штрихованная линия - наблюдаемая относительно неподвижных звезд траектория планеты.

• ежемесячное ускорение и замедление Земли при орбитальном движении;

• пропорциональное этому ускорению и замедлению, изменение радиусов ее орбиты;

• сдвиг траектории орбиты относительно Солнца и соответствующее сдвигу изменение эксцентриситета земной орбиты;

• практическое сохранение у сдвинутой орбиты длины большой оси эллипса.

Расчетные параметры, базирующиеся на эмпирике таблиц эфемерид, полностью меняют представление о механизмах взаимодействия тел в космическом пространстве и о самом космическом пространстве. Следует при этом еще раз отметить, что с изменением расчетных радиусов орбиты, длина линии апсид осталась практически неизменной. Однако траектория орбиты планеты оказывается сдвинутой и относительно Солнца и относительно неподвижных звезд (т.е. лучи неподвижных звезд, относительно которых определяется траектория движения Земли, достигают планету искривленными). Это очень важное обстоятельство. Оно свидетельствует о том, что существуют некоторые неизвестные пространственные обстоятельства, обусловливающие видимое (оптическое) перемещение планеты. И эти обстоятельства могут быть связаны только с вещественностью космического пространства. Поскольку только вещественное пространство (стеклянная линза, например) может искривлять солнечные лучи. Оно свидетельствует и о том, что окружающее космическое пространство представляет собой вещественное образование (ныне отвергаемый вещественный эфир) изменяемой (анизотропной) плотности.

Можно предположить, что вращающееся гравитационное поле Солнца, формирует околосолнечный вещественный эфир таким образом, что он приобретает способность преломлять (изгибать) проходящие через эфир электромагнитные и световые лучи. Т.е. придает пространству Солнечной системы свойства гравитационной линзы. Гравитационная линза, преломляя световые лучи далеких небесных тел, обусловливает возможность оптического изменения положения звезд относительно наблюдателей на Земле. В результате последние воспринимают космический мираж за истинную картину звездного неба. И наблюдатели, не замечая этого миража, получают искаженное представление о космических объектах (звездах, галактиках...), об их скорости и истинном положении в пространстве. И не замечают искажения не случайно.

Для субъекта окружающий мир как целое таков, каким он его видит (воспринимает). А космос с Земли воспринимается как невещественное пространство, как пространство изотропное. Как пустота, в которой свободно распространяются только электромагнитные поля, включая световые лучи. И данное восприятие переносится на весь космос. К тому же искусственные аппараты, как бы не взаимодействующие с внешней средой и свободно перемещающиеся в этом " пустом пространстве", подтверждают такое представление. И потому только гравитация, влияет на электромагнитные поля в пустом пространстве. Но гравитационное поле Солнечной системы, по современным представлениям, очень слабо и не может оказывать заметного влияния на электромагнитные поля.

Не придавая значения современным представлениям, допустим, что Солнечная система действительно является классической гравитационной линзой, которая преломляет проходящие через нее лучи. Т.е существует гравитационная рефракция - преломление световых лучей при прохождении ими околосолнечного эфира с изменяемой плотностью. В этом случае плоскость эклиптики разделяет линзу на симметричные половины, и планеты оказываются внутри ее на той же плоскости. И точки наиболее широкой части линзы находятся ортогонально плоскости эклиптики над и под осью вращения Солнца (рис. 60.), и свет, поступающий от звезд, только в этой точке практически не испытывает преломления. Лучи же звезд ортогональные эклиптики, падающие за пределами наиболее широкой части и, попадающие на Землю, будут отклоняться в одну сторону — к Солнцу (рис. 61.). И наблюдатели на Земле будут видеть, относительно неподвижных звезд траекторию эллипса, уменьшенного размера, но тогоже эксцентриситета.

Однако у расчетной траектории сама орбита сдвинута и относительно неподвижных звезд и относительно Солнца, да и эксцентриситет оказывается больше воспринимаемого, что необъяснимо с позиций классической механики. А это свидетельствует о недостаточной изученности и эфира, и механических, и гравитационных явлений. Известно, например,

механизме гравитации и об эфире наука до сих пор имеет достаточно скудное представление, мало чем отличающееся от представлений времен И. Ньютона.


Рис. 60. Солнце - 1, Земля в афелии - 2, оптическое отображение Земли в афелии - 3, требуемое (по структуре гравитационной линзы) отображение Земли в перигелии - 4, истинное положение Земли в перигелии - 5, оптическое отображение Земли в перигелии - 6, условная поверхность гравитационной линзы - 7, плоскость эклиптики - 8, неподвижные звезды - 9.

Особенно мало известно о гравитационных полях, космических взаимодействиях, плотности космического эфирного пространства и характера движения тел в нем. Так, например, фиксируемое эфемеридами ежемесячное ускорение и замедление орбитального движения свидетельствует о том, что планета взаимодействует с пространством, в котором она движется. Однако такое взаимодействие не замечается и не описывается классической механикой. Более того, классическая механика относит орбитальное движение к инерциальному движению, к движению без взаимодействия, что противоречит наблюдаемым явлениям. К тому же в классической теории не замечается и основной вид механического движения - пульсация. И это не может не отражаться на адекватном понимании происходящих в космосе процессов и в первую очередь процессов движения и взаимодействия.

Отмечу еще раз, что в космосе наблюдаются три вида движения. Два из них перемещение и пульсация. Однако в данной работе принимается во внимание третий, симметричный способ движения - механическое и гравитационное вращение, то самое движение, которое обусловливает вращение всем телам, перемещающимся в космическом пространстве, а в микромире фиксируется как спиновое движение.

Рассмотрим ещё раз, к каким последствиям приводит механическое вращение ротора (рис. 62.). Как уже говорилось, в соответствии с классической механикой вращающийся под действием внешних сил ротор не взаимодействует с окружающим пространством (предположим, что отсутствует и воздух и тем более эфир, поскольку механика постулирует его отсутствие в природе). На ротор, как видится в этом случае, действуют только центробежные силы, которые стремятся растянуть его ортогонально оси. По мере увеличения скорости вращения происходит удлинение радиуса ротора и пропорци







Дата добавления: 2014-10-29; просмотров: 746. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия