Студопедия — Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 1 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 1 страница






Таковы основные законы и принципы классической термодинамики, все три начала которой, как показано в [121, 123], оказались логически не связанными друг с другом. Иными словами, в построении классической термодинамики заложен эклектический принцип, ко­торый привел к тому, что она является, по существу, внутренне несогласованной наукой.

Являясь, по общему мнению, макрофизической нау­кой, которая не рассматривает микроструктуру вещества и движение микрочастиц в нем, классическая термоди­намика оперирует только независимыми переменны­ми (так называемыми параметрами состояния термоди­намической системы), определяющими вещество ТДС как целое. К параметрам состояния относятся удельная внутренняя энергия, давление, удельный объем, абсо­лютная температура, удельная энтропия, скорость звука и другие. Указанные параметры состояния ТДС могут быть определены экспериментально либо методами ста­тистической физики.

Математический аппарат классической термоди­намики, основанный на свойствах полного дифферен­циала, позволяет описывать изменения параметров со­стояния ТДС только в дифференциальной форме (форме бесконечно малых приращений). Примечательно, что в случае необходимости описания каких-либо процессов в полных параметрах, конечные выражения, содержащие полные параметры (объем, внутреннюю энергию, эн­тропию и т. д.), по форме не отличаются от подобных им выражений, записанных в удельных параметрах, хотя под знаком дифференциала оказывается и масса вещест­ва ТДС.

Тем самым оказывается, что масса приобретает статус параметра состояния ТДС. В этом можно усмотреть противоречие с классической механикой, где масса тела всегда считается постоянной.

Интегрирование дифференциальных соотношений классической термодинамики требует наличия уравне­ния состояния вещества ТДС, которое обычно опреде­ляется опытным путем, либо методами статистической физики. В настоящее время известно более 150 уравне­ний состояний реальных ТДС, которые могут быть све­дены к уравнению состояния реального газа, теоретиче­ски полученному Камерлинг-Оннесом методами статис­тической физики (121, 122) в форме:

π = ρ v = Tα R = Tz, (5.3)

где π – удельная потенциальная энергия ТДС; ρ – дав­ление; v –удельный объем; Т – абсолютная температура: α = f (ρ, T)– безразмерный параметр состояния ТДС, из­вестный как фактор сжимаемости реальною газа; R = 8314/μ дж/кгк газовая постоянная; μ кг/моль – моле­кулярная масса вещества; z = α R.

Следует отметить, как весьма странное то обстоятель­ство, что ни в одном из известных уравнений состоя­ния реальной ТДС не содержится такого параметра состояния, как удельная энтропия S. Параметр же z = α R = f (ρ, T), присутствующий в соотношении (5.3), до сих пор не нашел своего места в математическом аппарате КТД. Это лишний раз свидетельствует о действительно существующей внутренней несогласованности клас­сической термодинамики.

Вместо соотношения (5.3) при проведении операций интегрирования различных соотношений КТД принято пользоваться уравнением состояния идеального газа в форме Клапейрона, которое легко может быть получено из (5.3) при α = 1 и имеет вид [121, 122]:

α v = TR. (5.4)

Модель идеального газа, определяемая соотношением (5.4), настолько прочно утвердилась в современной нау­ке, что фактически является доминирующей в таких важнейших теориях, как газовая динамика, теория тур­булентности, химическая кинетика и др.

Между тем хорошо известно, что в Природе не суще­ствует веществ, обладающих свойствами идеального га­за в достаточно широком диапазоне изменения давления и температуры. Поэтому не удивительно, что интегри­рование точнейших соотношений классической термо­динамики с использованием уравнения (5.4) приводит к приближенным, а часто — и к просто неверным ре­зультатам.

Следует отметить также, что наряду с уравнением со­стояния реального газа в форме (5.3) в классической термодинамике используют и уравнение состояния ре­ального газа в форме Лапласа, которое широко приме­няется для определения квадрата скорости звука в лю­бом однофазном веществе (твердом, жидком, паро- или газообразном) и является, таким образом, универсаль­ным. Обычно это уравнение записывается в виде [121, 122]:

π = w2 = γ ρ v = (dp/dρ) s (5.5)

где π – удельная энергия ТДС в адиабатном волновом процессе; w – скорость звука; γ = сρ /cv = f(ρ, T) – без­размерный параметр ТДС, известный как показатель адиабаты процесса: сρ = f(ρ, T), cv = f(ρ, T) – удельные теплоемкости вещества при ρ = const и v = const', ρ = l/v – плотность вещества.

Как следует из литературы [35], соотношение (5.5) применяется для определения квадрата скорости звука в твердых телах (если γ ρ – модуль сдвига или модуль Юнга (для тонких стержней), в жидкостях (если γ ρ – модуль объемной упругости жидкости), в парах и газах (если; p – давление пара или газа).

С учетом уравнения (5.3) соотношение (5.5) принима­ет вид:

π = w2 = γ pv = γ Tα R = γ Тz = (dp/dρ) s. (5.6)

Совершенно очевидно из сравнения соотношений (5.5) и (5.6), что (5.6) является более общим, так как содер­жит в себе уравнение (5.3). Поэтому, учитывая универ­сальность равенств (5.5) и (5.6), следует ожидать что уравнение (5.3) может быть использовано не только дня описания состояния реального газа или пара, но и для описания состояния жидких и твердых тел, то есть так­же может оказаться универсальным.

Принципиально важно указать на то, что равенство (5.5) было получено Лапласом в предположении, что распространение звука в веществе представляет со­бой волновой процесс, который происходит без обме­на тепловой энергией между звуковой волной и ок­ружающей средой. Подобные процессы получили в классической термодинамике название адиабатных.

Таким образом, факт наличия в равенствах (5.5), (5.6) или в каких-либо иных соотношениях термодинамики параметра γ следует считать указанием на то, что рас­сматриваемый процесс является физически подобным процессу распространения звука в веществе, т.е. яв­ляется волновым и притом адиабатным.

Однако хорошо известно, что любой волновой про­цесс характеризуется взаимопревращаемостью кинети­ческой и потенциальной энергий. Представив равенство (5.6) в виде [124]:

w2 = γ pv = ypV/m = γ TZ/m,

где V, m – объем и масса вещества термодинамической системы, находим:

mw2 = γ pV = γ ТZ.

Отсюда следует ранее неизвестное соотношение:

2Е = γ П, (5.7)

идентичное равенству (3.38), полученному ранее в ме­ханике, где в общем случае Е = mw2 /2 + Jω 2/2 – кине­тическая, а П = pV= TZ – потенциальная энергия ТДС; J – момент инерции частицы; ω – угловая скорость ее вращения вокруг своей оси. При этом w2 = w2TP + w2r. Таким образом, очевидно, что параметр

γ = cp/cv = 2E/П = f (p, T), (С)

действительно служит количественной мерой взаимо­превращаемости кинетической и потенциальной энергий в волновом адиабатном процессе распростра­нения звука в веществе. Из физики [35, 125] известно, что отношение величин этих энергий определяет форму траектории тела (частицы) в пространстве, т.е. в дан­ном случае — форму звуковой волны.

С учетом соотношения (5.7) закон сохранения полной энергии ТДС для волнового адиабатного процесса рас­пространения звука в веществе принимает вид;

W = E ± П = (γ ± 2) П/ 2= (γ ± 2) E/γ = const, (5.8)

где знаки ± учитывают знак потенциальной энергии.

Зависимость γ = f (p, T), присутствующая в равенствах (5.5)÷ (5.8), как очевидно, должна представлять собой периодическую функцию, изменяющуюся в простран­стве и во времени. Однако из справочной литературы [126] этого явно не следует. В связи с этим определить истинную форму звуковой волны по справочным дан­ным до сих пор не представлялось возможным.

Являясь наукой, описывающей процессы, происходя­щие (как очевидно) в пространстве и во времени, клас­сическая термодинамика, тем не менее, не оперирует временем как параметром состояния ТДС. Между тем, ввести время в соотношения термодинамики не состав­ляет особого труда. В самом деле, поскольку удельная потенциальная энергия ТДС эквивалентна удельной ра­боте, производимой ТДС над окружающей средой, то с помощью уравнения (5.3) можно записать:

π = l = pv = Tz.

Используя это равенство, можно представить удель­ную работу в виде:

l = lt/t = Nt, (5.9)

где N – удельная мощность; t – время протекания про­цесса. В этом случае равенство (5.1) принимает вид:

du = Tds – pdv = TdsNdt. (5.10)

Однако даже такие простейшие временные преобразо­вания, какими являются соотношения (5.9), до сих пор в классической термодинамике не применялись. Возвра­щаясь к равенству (5.1), следует указать, что на его ос­нове, с помощью преобразований Лежандра [121] могут быть получены еще три так называемых характеристи­ческих уравнения классической термодинамики, яв­ляющихся выражениями полных дифференциалов:

удельной свободной энтальпии

dg = –sdT + vdp; (5.11)

удельной энтальпии

di = Tds + vdp; (5.12)

удельной свободной энергии

df = –sdT – pdv. (5.13)

Напомним о том, что преобразования Лежандра по­зволяют установить, является ли данное дифференци­альное соотношение полным дифференциалом функции. Для того чтобы установить это в отношении, например, равенства ( 5.12), достаточно к обеим частям равенства (5.1) прибавить выражение полного дифференциала d (pv). В результате получим:

du +d (pv)= Tdspdv + d (pv) = Tds + vdp.

Так как левая часть полученного выражения по свой­ству удельной внутренней энергии (как функции термо­динамических параметров) заведомо является полным дифференциалом, то полным дифференциалом является и его правая часть. Поэтому, обозначая di = du + d (pv), в результате находим, что di = Tds + vdp. Аналогично мо­гут быть получены и проверены соотношения (5.11)–(5.13).

Основываясь на известном из математики [121] необ­ходимом и достаточном условии полного дифференциа­ла (выраженным равенством накрест взятых частных производных), из соотношений (5.1), (5.11), (5.13) нахо­дим следующие дифференциальные соотношения клас­сической термодинамики в частных производных, из­вестные как уравнения Максвелла [121, 122]:

(dT/dv) s = – (dp/ds) v, (5.14)

(ds/dp) T = – (dv/dT) p, (5.15)

(dT/dp)s = (dv/ds) p, (5.16)

(ds/dv) T = (dp/dT) v. (5.17)

Уравнения Максвелла широко используются в класси­ческой термодинамике для определения изменений па­раметров состояния термодинамической системы, по­зволяя сократить количество опытных данных о физических свойствах вещества, обнаружить возможные ошибки, возникающие в экспериментах или расчетах, заменить в уравнениях (при необходимости) одни пара­метры состояния другими.

Столь же важную роль в классической термодинамике играют и удельные теплоемкости [121, 122]:

cp = T (ds/dT) p, (5.18)

cv = T (ds/dT) v. (5.19)

При этом оказывается справедливым равенство:

ср – cv = T (dp/dT) v (dv/dT) p. (5.20)

Используя, например, уравнение Клапейрона (5.4), с помощью равенства (5.20) можно получить известную формулу Майера для идеального газа:

cp – cv = R. (5.21)

Параметры состояния ТДС, которыми только и опери­рует классическая термодинамика, являются среднеста­тистическими (т.е. вероятностными) величинами. По­этому следует ожидать, что известная в КТД статистическая формула Больцмана для энтропии [122]:

S = kln (W), (5.22)

где k – постоянная Больцмана, W – отношение веро­ятностей состояния ТДС) может оказаться не единст­венной в ряду себе подобных. Формула (5.22), которая в классической термодинамике фактически не использу­ется, позволяет осуществлять переход с макро- на микроуровень описания материи и служит, таким обра­зом, своеобразным масштабным соотношением термо­динамической теории.

В начале главы 4 упоминалось, что классическая тер­модинамика способна описывать процессы самой разно­образной физической и химической природы. Действи­тельно, в некоторых работах по классической термодинамике изредка можно встретить уравнения, за­писанные в так называемом обобщенном виде. Напри­мер, в работе [121] дается обобщенная форма записи уравнений Максвелла (5.14)–(5.17). Это достигается тем, что обозначают у ≡ р, а х ≡ v. При этом у играет роль обобщенного потенциала, а х ≡ – обобщенной коор­динаты.

Но если быть последовательным до конца, то необхо­димо признать, что в таком случае любые соотношения классической термодинамики могут быть представлены в обобщенном виде. Фактически это означает, что лю­бые соотношения КТД могут быть использованы для описания не только тепловых, но и механических, электромагнитных и гравитационных взаимодейст­вий.

К сожалению, автору до сих пор не приходилось встречать применения таких параметров, как энтропия и абсолютная температура ни в механике, ни в оптике, ни в электродинамике, ни в каких-либо других не тер­модинамических теориях. Изложенное подводит к вы­воду о том, что классическая термодинамика, являясь по существу универсальной теорией природных взаимо­действий, используется не в полную силу, по-видимому, вследствие ряда спорных и противоречивых обстоя­тельств, часть из которых отмечена в ходе данного ана­лиза. Принципиально важным из них является проблема универсального уравнения состояния ТДС. Именно поэтому указанная проблема должна быть исследована особо.

 

5.2. Универсальное уравнение состояния

вещества термодинамической системы

 

Отсутствие в классической термодинамике универ­сального уравнения состояния — ТДС вовсе не означа­ет, что такого уравнения не существует. Результаты не­которых [127] новейших исследований (не выходящих, однако, за рамки привычных представлений КТД) ука­зывают на то, что вероятность существования универ­сального уравнения состояния ТДС чрезвычайно вы­сока. Попытаемся отыскать это уравнение. Для этого запишем уравнение состояния реального газа (5.3) в ви­де [128]:

π = pv = Tz, (5.23)

где π – удельная потенциальная энергия реального газа. Из соотношения (5.23) следует, что в общем виде

π = f1 (p, v) = f2 (Tz). (5.24)

Дифференцируя все части этого соотношения, нахо­дим:

dπ = (dπ /dp) v dp + (dπ /dv) p dv = (dπ /dT)zdT + (dπ /dz)Тdz. (5.25)

С другой стороны, дифференцируя все части равенст­ва (5.23), получаем:

dπ = d(pv)= d(Tz) (5.26)

или

= vdp + pdv = zdT + Tdz. (5.26a)

Сравнивая равенства (5.25) с (4.26а), находим коэф­фициенты:

v = (dπ /dp) v; p = (dπ /dv) p;

z = (dπ /dT) z; T = (dπ /dz) Т. (5.27)

Представим равенство (5.26а) в виде:

Tdz – pdv = –zdT + vdp. (5.28)

Важно определить, являются ли обе части этого выра­жения полными дифференциалами? Для этого восполь­зуемся преобразованиями Лежандра. Прибавляя к обеим частям (5.28) полные дифференциалы, выраженные ра­венством (5.26), находим тождество:

Tdz + vdp = Tdz + vdp. (5.29)

Применяя теперь к тождеству (5.29) необходимое и достаточное условие полного дифференциала, получаем:

(dT/dp) z = (dv/dz) p. (5.30)

С учетом равенств (5.27) для коэффициентов Т и v из (5.30) находим:

d/dpz (dπ /dz) Т = d/dzp∙ (dπ /dp)γ ,

откуда, заменяя индексы Т → р, v → z, получаем:

d2π /dpdz = d2π /dzdp.

Полученное выражение является известным матема­тическим равенством. Поэтому можно заключить, что выражение (5.29), а следовательно и обе части выраже­ния (5.28) являются полными дифференциалами. При­меняя необходимое и достаточное условие полного дифференциала к обеим частям равенства (5.28), полу­чаем:

(dT/dv) z = – (dp/dz) v, (5.31)

(dz/dp) T = – (dv/dT) p, (5.32)

Сравнивая уравнение (5.32) с уравнением Максвелла (5.15), находим [129]:

(ds/dp) Т = (dz/dp) Т = – (dv/dT) p.

Отсюда получаем:

(ds/dz) Т = ds/dz = 1.

Это означает, что dz – ds в процессе Т = const. Приме­няя вновь к соотношению (5.26а) преобразования Ле­жандра, вычитая из обеих его частей полные дифферен­циалы d (Tz) = d (pv), получаем тождество:

zdT – pdv ≡ –zdTpdv. (5.33)

Применяя к этому тождеству необходимое и доста­точное условие полного дифференциала, получаем:

(dz/dv) T = (dp/dT) v. (5.34)

С учетом равенств (5.27) для z и р из равенства (5.34) получаем (заменяя индексы zv, p → Т):

d/dvТ (dπ /dT) v = d/dTv (dπ /dv) Т,

или

d2π /dvdT = d2π /dTdv.

Тем самым доказано, что выражение (5.33) также яв­ляется полным дифференциалом.

Таким образом установлено, что все исследованные выражения (5.28), (5.29) и (5.33) являются полными дифференциалами. Необходимо, однако, доказать, что dz = ds не только в процессе Т = const, но и в процессах р = const и v = const.

Проще и нагляднее всего это можно сделать, если изо­бразить процесс Т = const в диаграмме T-S (рис. 70). То­гда расстояние между двумя точками 1, 2 на кривой Т = const дает равенство ∆ z = ∆ s. Если теперь через любую из точек, расположенных на кривой Т = const, провести кривые р = const и v = const, то для соответствующих точек 1, 2 на этих кривых также окажется, что ∆ z = ∆ s. Переходя к бесконечно малым, получим dz = ds.

Тот же результат можно получить, если сравнить пол­ные дифференциалы:

du = Тds – pdv, (5.1)

di = Тds + vdp, (5.12)

du' = Тdz – pdv, (5.28)

di' = Тdz + vdp, (5.29)

где du', di' – просто обозначения полных дифференциалов (5.28), (5.29).

Из выражений (5.1), (5.28) для процесса v = const находим:

(du/ds) v = (du'/dz) v = Т.

Отсюда следует:

du/ds = du'/dz.

Подставляя в числители этого выражения соотношение (5.1), (5.28), получаем dz = ds.

Аналогичным образом с помощью равенств (5.12), (5.29)можно показать, что в процессе р = const также dz = ds. Это свидетельствует о том, что dz = ds в любых тер­модинамических процессах. Поэтому, интегрируя ра­венство dz = ds в пределах 1 - 2 состояния ТДС, в каких-либо процессах (Т = const, p = const или v = const), на­ходим с учетомобо- Рис. 70.значения z = Rα (где R –const):

z2 – z1 = s2 – s1 = R(α 1 – α 2). (5.35)

В графическом изображении (рис. 71) равенство (5.35) представляет собой уравнение прямых, проходящих в координатах z – α и s – α через начала координат и точки 1 и 2 под одинаковыми углами наклона φ = arctg(R) = const этих прямых к осям α. Общий вид урав­нений этих прямых есть z = s = ;.

С получением равенства z = S = Rα и с учетом уравне­ния (5.31), уравнение (5.23) принимает вид:

π = pv = Ts = Nt. (5.36)

Равенство (5.36) содержит пространственную (v)и временную (t)характеристики ТДС. В связи с этим изла­гаемая далее термодинамическая теория учитывает пространственно-временную сущность любых природных взаимодействий.

Прежде чем будет оп­ределена действитель­ная роль уравнения (5.36) в термодинамике, проведем дополнтельную провер­ку, смысл которой за­ключается в том что если это уравнение не протии-воречит класссической термоди-намике, то с его помощью могут Рис. 71. быть получены любые из извест­ных в КТД соотношений. Для примера с помощью урав­нения (5.36) выведем равенство (5.20):

cp – cv = T (dp/dT)v∙ (dv/dT)p. (a)

Дифференцируя первые три части уравнения (5.36), получаем:

= pdv + vdp = Tds + sdT. (b)

Дифференцируя все части уравнения (b) по Т, сначала при р = const, а затем при v = const, и вычитая почленно полученные результаты, с учетом равенств (5.18) и (5.19) находим

(dπ /dT) p (dπ /dT) v = p (dv/dT) pv (dp/dT) v = T [(ds/dT) p (ds/dT) v ] = cp – cv. (c)

Применяя к выражению в квадратных скобках равен­ства (с) известную формулу математики [130]:

(dz/dx) u = (dz/dx) y + (dz/dy) x (dy/dx) u

и полагая в ней z ≡ s, x ≡ Т, и ≡ р и уv, получаем:

(ds/dT) p (ds/dT) v = (ds/dv) T (dv/dT) p. (d)

Заменяя в выражении (d) с помощью уравнения Мак­свелла (5.17):

(ds/dv)Т = (dp/dT)v

и подставляя полученный результат в соотношение (с), получаем формулу (а).

Используя теперь равенство (а), получим формулу Майера (5.21):

cp – cv= R (е)

Полагая s = const в уравнении рv = Ts, находим производные (dp/dT)v = s/v; (dv/dT)p = s/p, подставляя которые в равенство (а), получаем

рcv)s = Ts/v∙ s/p = s = α R.

Отсюда при α = 1 следует формула Майера (е) для идеального газа.

Итак, проверка показала, что уравнение pv = Ts не противоречит классической термодинамике. Более де­тальные исследования также подтверждают этот вывод. Следовательно, уравнение (5.36) может теперь на закон­ных основаниях использоваться в дальнейших выклад­ках.

Прежде всего, определим роль параметра s = α R = f(p, T) в этом уравнении. Поскольку газовая постоянная R = 8314/ µ, [ Дж/кг∙ К° ], где µ [ кг/моль ]— молекулярная масса вещества, то удельная энтропия

s = α R = α ∙ 8314 /µ =f(p, T), [ Дж/кг∙ К° ]

есть параметр состояния ТДС, который устанавливает взаимосвязь между физическими (α = f (p, T)) и хими­ческими (µ) свойствами вещества термодинамической системы. В этом заключается одно из важнейших назна­чений удельной энтропии в термодинамике, чем и объ­ясняется столь успешное ее применение в физической химии. С другой стороны, удельная энтропия соответст­вует удельной работе, производимой термодинамиче­ской системой над окружающей средой (либо окру­жающей средой над термодинамической системой) при изменении температуры на один градус, чем объясняет­ся успешное применение термодинамики и в нехимиче­ских дисциплинах.

При анализе равенств (5.3), (5.5) и (5.6) было высказа­но предположение о том, что уравнение (5.3) может ока­заться одинаково пригодным для описания состояния твердых, жидких, паро- или газообразных ТДС, то есть может оказаться в этом смысле универсальным.

Чтобы убедиться в этом проведем оценку величины параметра α = f(p, T), присутствующего в указанных ра­венствах для подобных веществ, нахо­дим:

α = w2/γ RT = w2µ/γ ∙ 8314 Т.

Используя данные работы [122], расчетом по этой фор­муле находим:

• для стали: (Т = 293 Ко; γ = 1; µ = 56 кг/моль; w = 5130 м/с), α = 605;

• для воды: (Т= 293 K°, γ = 1; µ = 18 кг/моль; w= 1505 м/с), α = 16, 74;

• для газообразного водорода: (Т = 293 К°; γ = 1, 4; µ = 2 кг/ моль; w = 1505 м/с), α = 1;

• для водяного пара в критической точке: (Т = 647, 3 К°; γ = 1; µ =18 кг/моль; w = 260 м/с), α = 0, 224.

Эти примеры обнаруживают значительные расхож­дения в величинах параметра α = f (p, T) в зависимости от фазового состояния рассмотренных веществ. Они, в частности, свидетельствуют о сжимаемости твердых и жидких тел. С другой стороны, они показывают, что равенства (5.5), (5.6), содержащие этот параметр, при­годны для расчетов квадрата скорости звука в любых веществах. Следовательно, такой же универсальностью обладает равенство (5.3), а также и уравнение (5.36). Присутствие в уравнении (5.36) удельной энтропии, как наиболее общего параметра состояния ТДС, позволяет считать это уравнение универсальным уравнением со­стояния ТДС, находящейся в твердом, жидком, паро- или газообразном состояниях. В связи с этим уравне­ние (5.36) приобретает значение тождества термоди­намики.

 

5.3. Система законов

новой термодинамики

 

Располагая тождеством термодинамики, можно уточ­нить математические выражения и физический смысл основных законов новой термодинамики. Дифференци­руя все части тождества (5.36), получаем:

= pdv + vdp = Tds + sdT = Ndt + tdN.

Отсюда находим:

Tds – pdv = – sdT + vdp = TdsNdt = – sdT + tdN. (5.37)

Учитывая равенства (5.1), (5.10) и (5.11), выражение (5.37) можно представить в виде

du = dg = Тdspdv = –sdT + vdp = Tds – Ndt = –sdT + tdN =

= δ q – δ l = –δ qTp + δ lTp = 0 (5.38)

где δ qTp и δ lTp, – удельные теплота трения и работа тре­ния микрочастиц в веществе термодинамической систе­мы.

Равенство нулю выражения (5.38) следует из сущест­вования принципа эквивалентности теплоты и работы, одинаково справедливого для процессов внешнего и внутреннего энергообменов. Оно вытекает также из ра­венств (5.27)÷ (5.34). Соотношение (5.38) представляет собой развернутое математическое выражение первого закона новой термодинамики.







Дата добавления: 2014-10-29; просмотров: 691. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия