Студопедия — Проектировочный расчет передачи
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проектировочный расчет передачи






Проектировочный расчет передач служит только для предварительного определения размеров и не отменяет расчета на контактную выносливость.

При проектировочном расчете определяется один из геометрических параметров передачи – межосевое расстояние аw или делительный диаметр шестерни d 1 [7, с. 57]. Предпочтительным считается расчет аw, так как его значение сразу дает представление о габаритах передачи.


Делительный диаметр шестерни

 

 

где Kd – вспомогательный коэффициент; Kd = 675 – для косозубых и шевронных передач; Kd = 770 – для прямозубых передач [6, с. 331]; [7, с. 57].

Ориентировочное значение межосевого расстояния [6, с. 332; 7, с. 57]

 

 

где знак «плюс» используется при расчете передач внешнего зацепления, а «минус» – для передач внутреннего зацепления;

Ka – вспомогательный коэффициент: для прямозубых передач Ka = 495, для косозубых и шевронных передач Ka = 430 [6, с. 332; 7, с. 57];

Т 2 – вращающий момент на колесе (на ведомом звене);

u – передаточное число передачи;

КH β – коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, принимают в зависимости от твердости колес и параметра ψ bd по графику (рис. 5.3):

 

ψ bd = b 2 / d 1 = 0, 5 ψ ba (u ± 1)

 

ψ bd – коэффициент ширины колеса относительно делительного диаметра шестерни;

ψ ba – коэффициент ширины колеса относительно межосевого расстояния; принимают из стандартного ряда чисел в зависимости от положения колес относительно опор (см. с. 22).

Передача косозубая, расположение колес – симметричное, следовательно,

 

Kа = 430;

 

ψ ba = 0, 4;

ψ bd = 0, 5 [0, 4(5 + 1)] = 1, 2;

 

KH β = 1, 12;

 

 

Полученное ориентировочное межосевое расстояние округляем до стандартного значения по предпочтительному ряду (табл. 5.4, с. 55). Принимаем аw = 125 мм.

Нормальный модуль при принятой термообработке колес рекомендуется выбирать из диапазона

 

mn = (0, 01–0, 02) аw = (0, 01–0, 02) · 125 = (1, 25–2, 5) мм.

 

Из стандартного ряда модулей (табл. 5.5, с. 55) принимаем m = 2 мм. Значение модуля менее 1, 5 мм для силовых передач задавать не рекомендуется.

Рабочая ширина колеса

 

b 2 = ψ ba · аw = 0, 4 · 125 = 50 мм;

 

ширина шестерни

 

b 1 = b 2 + (2–7) мм = 50 + (2–7) = 52–57 мм.

 

Принимаем b 1 = 55 мм.

Угол наклона зубьев для косозубого зацепления без смещения рекомендуется β = 7–18°.

Предварительно приняв коэффициент осевого перекрытия ε β = 1 [8, с. 174, табл. 9.1], определим минимальный угол наклона зубьев:

 

sin β = π · mn ε β / b 2 = 3, 14 · 2 · 1 / 50 = 0, 1256;

β = 7°12'55'' или β min = arcsin(4 mn / b 2).

 

Величиной угла β можно задаться, например, β = 10°.

Суммарное число зубьев [2, с. 13]

 

z = (2 · аw · cos β) / m = (2 · 125 · cos 7, 2154) / 2 = 124, 01.

 

Принимаем z = z 1 + z 2 = 124.

Определим числа зубьев шестерни z1 и колеса z 2.

 

z 1 = z / (u +1) =124 / (5 +1) = 20, 67;

 

принимаем z 1 = 21;

 

z 2 = z z 1 = 124 – 21 = 103.

 

Фактическое передаточное число u ф = z 2 / z 1 = 103/21 = 4, 905.

 

u = (u фu) / u · 100 % = ((5 – 4, 905) / 5) · 100 %) = 1, 9 % ≤ 4 %.

 

Для того, чтобы вписать косозубую цилиндрическую передачу в заданное межосевое расстояние аw = 125 мм при принятых числах зубьев зубчатых колес, уточним угол наклона зубьев:

 

cos β = m (z 1 + z 2)/(2 · аw) = 2 (21 + 103) / (2 · 125) = 0, 992°;

 

β = 7, 25220° = 7°15'8''.

 

Определим делительные диаметры, диаметры вершин и впадин зубьев зубчатых колес:

 

d 1 = m · z 1 / cos β = 2 · 21 / 0, 992 = 42, 339 мм;

 

d 2 = m · z 2 / cos β = 2 · 103 / 0, 992 = 207, 661 мм;

 

dа 1= d 1 + 2 · m = 42, 339 + 2 · 2 = 46, 339 мм;

 

dа 2 = d 2 + 2 · m = 207, 661 + 2 · 2 = 211, 661 мм;

 

df 1= d 1 – 2, 5 · m = 42, 339 – 2 · 2, 5 = 37, 339 мм;

 

df 2 = d 2 – 2, 5 · m = 207, 661 – 2 · 2, 5 = 202, 661 мм.

 

Выполним проверку межосевого расстояния:

 

аw = (d 1 + d 2) / 2 = (42, 339 + 207, 661) / 2 = 125 мм.

 

Вычислим величину усилий, действующих в зацеплении, и изобразим схему действия сил (рис. 5.2):

– окружная:

Ft = 2 · Т 2 / d 2 = 2 · 331080 / 207, 661 = 3188, 66 Н;

 

– радиальная:

 

Fr = Ft · tg α tw / cos β = 3188, 66 ·tg 20° / 0, 992 = 1169, 94 Н;

 

– осевая:

 

Fа = Ft · tg β = 3188, 66 ·tg 7°15'8'' = 405, 77 Н.

 

 

Рис. 5.2. Схема сил, действующих в косозубом цилиндрическом зацеплении

 







Дата добавления: 2014-10-29; просмотров: 1221. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия