Студопедия — ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ. Момент инерции – это физическая величина, являющаяся мерой инертности тела при его вращательном движении
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ. Момент инерции – это физическая величина, являющаяся мерой инертности тела при его вращательном движении






 

Момент инерции – это физическая величина, являющаяся мерой инертности тела при его вращательном движении. В этом смысле он подобен массе, являющейся мерой инертности тела при поступательном движении. Величина момента инерции, по определению, равна сумме произведений масс частиц тела на квадраты их расстояний r до оси вращения:

J = S m i ri2 или J = ò r 2 dm. (1)

 

Величина момента инерции тела зависит не только от массы тела, но и от расположения частей тела относительно оси вращения. Чем дальше от оси находятся части тела, тем больше момент инерции.

Теоретический расчет момента инерции тел упрощается при применении теоремы Штейнера. Получим уравнение теоремы. Пусть точка О – центр масс тела, через которую проходит ось О – О, а параллельно ей на некотором расстоянии а ось С− С (рис. 1). Установим связь между моментами инерции тела относительно этих осей.

Представим вектор от оси С – С до некоторого элемента массы m i как сумму векторов (рис. 1). Подставив в определяющую формулу момента инерции (1) радиус - вектор r и возведя сумму в квадрат, получим

 

. (2)

Первый член этого уравнения J 0 – момент инерции тела относительно оси О – О, проходящей через центр масс. Во втором члене сумма определяет положение центра масс тела относительно оси О – О, и так как ось проходит через центр масс, то эта сумма равна нулю. Третий член – это произведение суммы масс частиц, то есть массы тела на квадрат расстояния между осями. Итак,

 

J = J 0 + m a 2. (3)

 

Это уравнение теоремы Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, и произведению массы тела на квадрат расстояния между осями. В тех случаях, когда момент инерции относительно оси, проходящей через центр масс J 0 , можно сравнительно легко рассчитать, теорема Штейнера позволяет определить момент инерции относительно произвольной оси Jс, избежав весьма трудоемких расчетов.

Теорему Штейнера можно экспериментально подтвердить, если измерить момент инерции тела при разных расстояниях а от оси вращения до центра масс тела. Если зависимость J (a 2) будет линейной с угловым коэффициентом, равным массе тела, то теорема верна.

Одним из методов измерения момента инерции тел является метод крутильного маятника. Крутильный маятник это тело, произвольной формы, подвешенное на упругих струнах. В лабораторной установке – это рамка (рис.1). Если рамку отклонить от положения равновесия и отпустить, то она под действием момента упругих сил струны (M =− kα) возвращается к положению равновесия, но по инерции проходит положение равновесия, закручивая струну в противоположном направлении. Возникают вращательные колебания. Применим основной закон динамики вращательного движения: произведение момента инерции рамки на угловое ускорение равно моменту упругих сил подвеса:

. (4)

 

Это дифференциальное уравнение второго порядка. Его решением должна быть функция, обращающая его в тождество. В данном случае это уравнение гармонических колебаний , где Т – период колебаний. Подставив функцию в уравнение (4), получим, что она будет решением, если период колебаний маятника равен

. (5)

Исследуемое тело представляет собой составной цилиндр из двух половин, полуцилиндров. Наденем их на стержень на одинаковом расстоянии а (рис. 2). Момент инерции маятника изменится и будет равен сумме момента инерции рамки и искомого момента инерции цилиндра. Период тоже изменится и станет равным

 

. (6)

 

Решая совместно уравнения (5) и (6), исключая коэффициентупругости к, получим формулу для экспериментального определения момента инерции цилиндра по известному моменту инерции рамки

 

. (7)

 







Дата добавления: 2014-10-29; просмотров: 1025. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия