Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КРАТКАЯ ТЕОРИЯ. Моментом инерции материальной точки относительно какой-либо оси называется произведение ее массы на квадрат расстояния до этой оси:





Моментом инерции материальной точки относительно какой-либо оси называется произведение ее массы на квадрат расстояния до этой оси:

 

(1)

 

Моментом инерции твердого тела относительно какой либоосиназывается сумма моментов инерции всех точек тела относительно этой же оси:

 

(2)

 

Момент инерции тела относительно данной оси, не зависит от характера движения тела, а зависит от массы тела, его размеров, формы, т.е. от распределения массы относительно оси вращения. Момент инерции тел правильной геометрической формы может быть вычислен теоретически. Момент инерции тела является физической величиной, характеризующей инертность тела при вращательном движении: тело с большим моментом инерции будет иметь меньшее угловое ускорение при том же действующем моменте сил.

Расчет момента инерции тел. В формуле (2) элементарная масса , равна произведению плотности тела в данной точке на соответствующий элементарный объем : . Следовательно, момент инерции можно представить в виде:

(3)

 

Если плотность тела постоянная, ее можно вывести за знак суммы:

 

(4)

 

Для сплошного тела соотношения (3) и (4) являются приближенными, причем тем более точными, чем меньше элементарные объемы и соответствующие им элементарные массы . Следовательно, задача нахождения моментов инерции сводится к интегрированию:

 

(5)

 

Причем интеграл берется по всему объему, а величины r и r являются функциямикоординат. В качестве примера найдем момент инерции однородного шара (рис. 1).


Рис. 1.

Схематическое изображение однородного шара (R – радиус шара, r – радиус бесконечно малого элемента, z – расстояние)

 

При вычислении момента инерции шара его разбивают на бесконечно большое число бесконечно малых элементов с массами dm (см. рис. 1), тогда масса шара равна:

(6)

 

Момент инерции шара равен:

(7)

Формулы для расчета момента инерции тел правильной формы массы m относительно осей, проходящих через центр масс даны в таблице 1.

Если же тело имеет сложную форму (маховое колесо, коленчатый вал, винт и т.д.), то теоретически определить момент инерции трудно. В таких случаях момент инерции определяют экспериментальным путем, например, используя крутильные колебания.

Таблица 1. Таблица моментов инерции для однородных тел простейшей формы

 

№ п.п. Тело Положение оси OZ Момент инерции I
  Полый тонкостенный цилиндр радиусом R и массой m. Ось симметрии
  Сплошной цилиндр (диск) радиусом R и массой m. Ось симметрии
  Прямой тонкий стержень длиной l и массой m. Ось перпендикулярная стержню и проходит через его середину
  Прямой тонкий стержень длиной l и массой m. Ось перпендикулярная стержню и проходит через его конец
  Шар радиусом R и массой m. Ось проходит через центр шара
  Шар радиусом R и массой m. Ось проходит на расстоянии d от центра шара

 

Схема крутильного маятника изображена на рис. 2

Рис. 2

Схема крутильного маятника: (R – радиус цилиндра, l – длина проволоки, φ – уголповорота)

 

Крутильный маятник представляет собой упругую проволоку с закрепленным верхним концом к нижнему концу, которой жестко присоединено изучаемое тело.

Поворачивая тело на угол j, мы создаем в проволоке возвращающий момент упругой силы Муп, который по закону Гука пропорционален деформации кручения j

 

Мупр= -¦j (8)

где ¦ - модуль кручения, который зависит от параметров проволоки.

(9)

где d - диаметр проволоки; l - длина проволоки; N - модуль сдвига материала проволоки.

По второму закону Ньютона, момент упругой силы создает угловое ускорение пропорциональное этому моменту.

(10)

Таким образом, свободное вращение крутильногомаятника при пренебрежении силами трения, будет описываться дифференциальными уравнениями, объединяющими второй закон Ньютона и закон Гука.

(11)

Интегрируя эти уравнения, получаем его решение

(12)

Следовательно, при допустимости сделанныхнами упрощений, маятникбудет совершать гармонические колебания с периодом колебаний

(13)

 







Дата добавления: 2014-10-29; просмотров: 782. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия