Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КРАТКАЯ ТЕОРИЯ. Моментом инерции материальной точки относительно какой-либо оси называется произведение ее массы на квадрат расстояния до этой оси:





Моментом инерции материальной точки относительно какой-либо оси называется произведение ее массы на квадрат расстояния до этой оси:

 

(1)

 

Моментом инерции твердого тела относительно какой либоосиназывается сумма моментов инерции всех точек тела относительно этой же оси:

 

(2)

 

Момент инерции тела относительно данной оси, не зависит от характера движения тела, а зависит от массы тела, его размеров, формы, т.е. от распределения массы относительно оси вращения. Момент инерции тел правильной геометрической формы может быть вычислен теоретически. Момент инерции тела является физической величиной, характеризующей инертность тела при вращательном движении: тело с большим моментом инерции будет иметь меньшее угловое ускорение при том же действующем моменте сил.

Расчет момента инерции тел. В формуле (2) элементарная масса , равна произведению плотности тела в данной точке на соответствующий элементарный объем : . Следовательно, момент инерции можно представить в виде:

(3)

 

Если плотность тела постоянная, ее можно вывести за знак суммы:

 

(4)

 

Для сплошного тела соотношения (3) и (4) являются приближенными, причем тем более точными, чем меньше элементарные объемы и соответствующие им элементарные массы . Следовательно, задача нахождения моментов инерции сводится к интегрированию:

 

(5)

 

Причем интеграл берется по всему объему, а величины r и r являются функциямикоординат. В качестве примера найдем момент инерции однородного шара (рис. 1).


Рис. 1.

Схематическое изображение однородного шара (R – радиус шара, r – радиус бесконечно малого элемента, z – расстояние)

 

При вычислении момента инерции шара его разбивают на бесконечно большое число бесконечно малых элементов с массами dm (см. рис. 1), тогда масса шара равна:

(6)

 

Момент инерции шара равен:

(7)

Формулы для расчета момента инерции тел правильной формы массы m относительно осей, проходящих через центр масс даны в таблице 1.

Если же тело имеет сложную форму (маховое колесо, коленчатый вал, винт и т.д.), то теоретически определить момент инерции трудно. В таких случаях момент инерции определяют экспериментальным путем, например, используя крутильные колебания.

Таблица 1. Таблица моментов инерции для однородных тел простейшей формы

 

№ п.п. Тело Положение оси OZ Момент инерции I
  Полый тонкостенный цилиндр радиусом R и массой m. Ось симметрии
  Сплошной цилиндр (диск) радиусом R и массой m. Ось симметрии
  Прямой тонкий стержень длиной l и массой m. Ось перпендикулярная стержню и проходит через его середину
  Прямой тонкий стержень длиной l и массой m. Ось перпендикулярная стержню и проходит через его конец
  Шар радиусом R и массой m. Ось проходит через центр шара
  Шар радиусом R и массой m. Ось проходит на расстоянии d от центра шара

 

Схема крутильного маятника изображена на рис. 2

Рис. 2

Схема крутильного маятника: (R – радиус цилиндра, l – длина проволоки, φ – уголповорота)

 

Крутильный маятник представляет собой упругую проволоку с закрепленным верхним концом к нижнему концу, которой жестко присоединено изучаемое тело.

Поворачивая тело на угол j, мы создаем в проволоке возвращающий момент упругой силы Муп, который по закону Гука пропорционален деформации кручения j

 

Мупр= -¦j (8)

где ¦ - модуль кручения, который зависит от параметров проволоки.

(9)

где d - диаметр проволоки; l - длина проволоки; N - модуль сдвига материала проволоки.

По второму закону Ньютона, момент упругой силы создает угловое ускорение пропорциональное этому моменту.

(10)

Таким образом, свободное вращение крутильногомаятника при пренебрежении силами трения, будет описываться дифференциальными уравнениями, объединяющими второй закон Ньютона и закон Гука.

(11)

Интегрируя эти уравнения, получаем его решение

(12)

Следовательно, при допустимости сделанныхнами упрощений, маятникбудет совершать гармонические колебания с периодом колебаний

(13)

 







Дата добавления: 2014-10-29; просмотров: 782. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия