Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КРАТКАЯ ТЕОРИЯ





Маятник Максвелла представляет собой маховик с радиусом R на оси радиуса r (см. рис. 1).

       
   
 
 
Рис. 1. Схема маятника Максвелла

 

 


На эту ось с двух сторон наматываются нити, в результате чего маховик поднимается на высоту h. При освобождении маховик движется вниз и раскручивается под действием момента, создаваемого силами натяжения нитей

Линейное ускорение , направленное вниз, маятник приобретает под действием разности сил натяжения нитей и силы тяжести. Найдем это ускорение, пренебрегая силами сопротивления. Из следствия из второго закона Ньютона: ma = mg – T; согласно основному уравнению динамики вращательного движения: (*). Учитывая, что момент инерции маховика: (моментом инерции оси можно пренебречь, моментом инерции тела относительно оси называется сумма произведений масс всех материальных точек тела на квадраты их расстояний до оси), и выразив угловое ускорение через линейное: , уравнение (*) можно представить в скалярном виде: , тогда решая полученную систему уравнений:

Можно получить:

По закону сохранения и превращения энергии (в замкнутой системе энергия может переходить из одних видов в другие и предаваться от одного тела другому, но ее общее количество остается неизменнной), если маятник Максвелла спустится с высоты h, то часть его потенциальной энергии mgh перейдет в кинетическую энергию поступательного движения и кинетическую энергию вращательного движения , а часть пойдет на совершение работы А против сил сопротивления:

(1)

Выразив угловую скорость маховика через линейную получим из (1):

(2)

При равноускоренном движении без начальной скорости

Таким образом, измерив время спуска маятника Максвелла, можно найти его линейную скорость в нижней точке υ и, используя (2), определить работу сил сопротивления. Зная А, можно рассчитать момент сил сопротивления (моментом сил называется по формуле:

(3)

 







Дата добавления: 2014-10-29; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия