Плоское напряженное состояние и плоская деформация
Даже в том случае, когда внутри пластины налицо условие возникновения плоской деформации, на поверхности ее всегда возникает плоское напряженное состояние. В направлении, перпендикулярном внешней поверхности, не действуют никакие напряжения, следовательно, на этой поверхности оζ ; = σ 3 t== 0. Если деформация внутренней части пластины происходит в основном в одной плоскости, то во внутренней ее части напряжение σ, постепенно увеличивается от нуля (на поверхности пластины) до величины, определяемой плоским
деформируемым состоянием (см. [24]). Таким образом, зона пластичности постепенно уменьшается от размера, определяемого плоским напряженным состоянием, до размера, соответствующего пло- ской деформации, как это схематически проиллюстрировано на рис. 4.10. Напряженное состояние влияет на размер зоны пластичности. С другой стороны, размер зоны пластичности также оказывает влияние на напряженное состояние. Значительные перемещения, возникающие в зоне пластичности, приводят к тому, что в эту область поступает материал из всех прилегающих областей. Когда зона пластичности велика по сравнению с толщиной пластины, может возник-нуть свободная текучесть в глубь пластины (рис. 4.11, а). На рис. 4.11, а показано сечение зоны пластичности в случае, когда по всему сечению пластины имеет место плоское напряженное состояние. Когда зона пластичности очень мала, свободное течение в глубь пластины возникнуть не может: ε ζ остается равным нулю из-за ограничивающего действия окружающего упругого материала. Из этого можно сделать вывод, что малой зоне пластичности соответствует плоская деформация, а большой — плоское напряженное состояние. Отношение размера зоны пластичности к толщине является существенным фактором, определяющим напряженно-деформированное состояние. Если размер зоны имеет тот же порядок, что и толщина пластины, т. е. если гр/В стремится к единице, то может образоваться плоское напряженное состояние. Для того чтобы в большей части внутренней области пластины возникло плоское деформированное состояние (чтобы область плоского напряженного состояния вблизи поверхности пластины распространялась только на сравнительно небольшую часть внутренней области), это отношение должно быть существенно меньше единицы. Экспериментально было показано (см. гл. VII), что поведение материала при разрушении сколом является типичным для плоской деформации, если гр/В порядка 0, 025. Размер зоны пластичности пропорционален К2\1о%. При большой интенсивности напряжения и низком пределе текучести возникает большая зона пластичности. Поэтому для того, чтобы в материале с низким пределом текучести и высокой прочностью (когда возможна высокая интенсивность напряжения) установилось преимущественно плоское деформированное состояние, требуется большая толщина, чем в низкопрочном материале с высоким пределом текучести. По этой причине для испытаний материалов на вязкость разрушения с низким oys и высоким К\с необходимы пластины соответственно большей толщины (см. гл. VII). Чтобы исследовать различные деформативные свойства материа- дов при плоском напряженном состоянии и при плоской деформации, рассмотрим круги Мора для трещин типа I, изображенные на рис. 4.12. Прежде всего отметим, что при θ = 0 напряжения σ υ и σ χ являются главными напряжениями Ο ι и σ 2. Поперечное напряжение σ ζ всегда является главным напряжением σ 3. При плоском напряженном состоянии максимальное касательное напряжение imax возникает в плоскостях, повернутых относительно направлений σ ι и σ 3 на угол 45°. Если (плоское напряженное состояние, Θ; = 0), то эти плоскости проходят через ось χ и составляют с плоскостью χ — ζ угол 45°, как показано на рис. 4.12, а. При плоской деформации величины aj и σ 2 имеют те же значения, что и при плоском напряженном состоянии. Третье главное напряжение равно ν (aj + σ 2). Для того чтобы пластическая деформация материала происходила при постоянном объеме, необходимо иметь ν — 1/2, а напряжение σ 3; = (σ 4 + σ 2)/2, как показано на рис. 4.12, б. При плоской деформации, как оказывается, тшах значительно меньше, чем в случае плоского напряженного состояния, и, кроме того, касательное напряжение достигает максимума на других плоскостях, повернутых относительно направлений σ 3 и σ 4 на 45°. Если ot f= av (θ r=t 0), то эти плоскости проходят через ось ζ и составляют с плоскостью χ — ζ угол 45° (рис. 4.12, б). Пластическая деформация, которая внешне проявляется как сдвиг, возникает под действием касательных напряжений. Следовательно, для различных плоскостей максимальных касательных напряжений внешний вид деформаций будет различным. На рис. 4.13 отображено два случая. Скольжение вдоль плоскостей, проходящих через ось χ и повернутых относительно поверхности пластины на 45°, трещины. Предсказанную прочность можно проверить экспериментально. Структурная механика занимается вопросами разрушения на уровне размеров атомов и дислокаций вплоть до размеров примесей и зерен. Понимание этих процессов дало бы возможность получить критерии, определяющие рост трещин и разрушение. Эти критерии предназначены для предсказания поведения трещины в заданном поле напряжений —деформаций. Понимание процессов разрушения дает также возможность выявить параметры материала, определяющие его трещиностойкость; эти параметры необходимо знать, если нужно получить материалы с повышенной трещиностойкостью. Для успешного использования механики разрушения в технических приложениях необходимо иметь некоторое понятие о дисциплинах, приведенных на рис. 1.2. В книге сделана попытка дать основы для понимания механики разрушения.
|