Студопедия — Интенсивность выделения энергии
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интенсивность выделения энергии






Энергетический критерий разрушения Гриффитса [1, 2] гласит рост трещины может иметь место в том случае, если система может выделить энергию, необходимую для образования дополнительной трещины с размером da. В гл. I был рассмотрен случай пластины с неподвижными краями. В этом случае внешняя нагрузка не может совершить никакой работы. Поэтому энергия, необходимая для роста трещины, должна быть передана за счет освобождения упругой энергии. Если края пластины во время расширения трещины могут свободно перемещаться, то внешняя нагрузка совершает работу. В этом случае упругая энергия, накопленная в пластине, не· уменьшается, а увеличивается.

Для пластины единичной толщины условие роста трещины можно записать в виде

где U — содержащаяся в пластине упругая энергия; F — работа, совершаемая внешней силой; W —энергия, необходимая для образования трещины. По аналогии с гл. I, G; = d(FU)/da есть «интенсивность выделения энергии», или «сила раскрытия трещины», a R; = = dW/'da —■ сопротивление росту трещины.

Рассмотрим пластину толщины В, на которую действует нагрузка Р, как показано на рис. 5.1 Под действием нагрузки точки приложения силы перемещаются относительно друг друга на расстояние v. При увеличении размера трещины на da это относительное перемеще увеличивается на dv. Следовательно, совершенная внешними силами работа будет равна Pdv. Отсюда следует, что



 


где В —толщина пластины [отметим, что уравнение (5.1) записано для пластины единичной толщины], a U, — полная упругая энергия.

запасенная в пластине толщины В. Деформации считаем упругими. В отсутствие роста трещины перемещение ν пропорционально нагрузке: v^=CP, где С —податливость пластины (величина, обратная ее жесткости). Для пластины без трещины, имеющей длину L, ширину W и толщину В, податливость С ~ = L/(WBE), где Ε —модуль Юнга. Упругая энергия, заключенная в пластине (с трещиной),

Ut = Pv/2 = CP2/2. (5.3)

Используя уравнение (5.3), можно вычислить величину, определяемую выражением (5.2), откуда получим (см. [3, 4])

Члены с dP/da сокращаются. Это означает, что величина G не зависит от того, является нагрузка постоянной или нет:

Величина G всегда равна производной от упругой энергии (однако знак этой величины при различных условиях" нагружения различен: при постоянной нагрузке U увеличивается, а при неподвижных зажимах U уменьшается).

Величину G можно также получить графически. Для трещины размера а (упругая) диаграмма «нагрузка —перемещение» представлена на рис. 5.2 линией О А. Для трещины длиной а + da соотношение между нагрузкой и перемещением представлено линией ОЕ. Пусть увеличение размера трещины от а до а + da происходит при нагрузке /V Если края пластины остаются неподвижными, то перемещение остается постоянным, а нагрузка уменьшается по линии АВ. Это означает, что выделение упругой энергии представлено треугольником ОАВ.

Если расширение трещины происходит при постоянной нагрузке, то происходит относительное перемещение ее краев на величину Α ν. Совершенная нагрузкой работа есть Ρ Α ν, что равно площади AEFC. Заключенная в пластине упругая энергия увеличивается при этом от ОАС до OEF. Прирост этой энергии равен площади треугольника ОАЕ. Эта энергия должна быть равна работе, совершенной нагрузкой. Поскольку площадь, очерченная фигурой AEFC, вдвое превосходит площадь треугольника ОАЕ, остается энергия, равная площади ОАЕ.




 


Пренебрегая маленьким треугольником ЛЕВ, получаем, что ОЛВ s=; = ОЛЕ. Это означает, что в обоих случаях для роста трещины высвобождается одинаковая энергия.

В случае неподвижных зажимов энергия высвобождается за счет уменьшения упругой энергии пластины. При постоянной нагрузке источником этой энергии является работа внешней нагрузки. В обоих случаях результаты одинаковы, и поэтому величину G можно вычислить, зная закон изменения упругой энергии. По этой причине величину G называют интенсивностью выделения упругой энергии.

Поскольку G есть интенсивность выделения упругой энергии, она должна быть пропорциональна σ 2/Ε. Эта величина равна энергии, приходящейся на единицу распространения трещины, следовательно, она должна быть равна энергии пластины, деленной на ее длину и на толщину (G есть величина, приходящаяся на единицу толщины). Поэтому величина G пропорциональна длине:

где С —константа, а λ —характерная длина. В бесконечной пластине с краевой трещиной длины а или с центральной трещиной длины единственным характерным размером является величина а. Для одной вершины трещины С? = π. Индекс I при G означает разрывающий тип нагрузки.

Из уравнения (5.6) следует, что для плоского напряженного состояния Gi i=a Κ ι /Ε. Это соотношение можно получить и иным путем. Рассмотрим бесконечную пластину с неподвижными краями! содержащую трещину длины а. Силы, приложенные к краям трещины (рис. 5.3) и достаточные для того, чтобы закрыть трещину на бесконечно малом расстоянии 8, совершат определенную работу. Эта работа равна энергии, выделяемой при расцеплении краев трещины (см. [5]).

Из рис. 5.3 следует, что

Необходимость коэффициента 2 определяется тем, что в трещине есть верхний и нижний края. Двойка в знаменателе учитывает тот факт, что напряжения увеличиваются от нуля.


Замечая, что χ s= г + а — δ, и пренебрегая членами второго порядка малости, получаем


Подставляя соотношения (5.9) и (5.10) в уравнение (5.7), можно выполнить интегрирование:


Если начало системы координат лежит в центре трещины, то из гл. III следует, что

Полагая в соотношении (5.11) г/Ь f= sin2q), получаем:

G = К\1е (плоское напряженное состояние); ·. _

G\ = (1 — v2)/Cf/£ (плоская деформация). J Аналогично можно показать, что для трещин типов II и III

Суммарную интенсивность выделения энергии при распространении трещин смешанного типа легко получить, складывая эти величины для различных типов трещин:

Используя уравнения (5.12) и применяя корректировочные коэффициенты для К, учитывающие конечность размеров (см. гл. III), можно определить величину G для пластин с конечными размерами.







Дата добавления: 2014-10-29; просмотров: 719. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия