Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сведения из теории. Механические колебания - это многократно повторяющиеся движения тела, т.е





Механические колебания - это многократно повторяющиеся движения тела, т.е. движения, при которых тело периодически (через равные промежутки времени) проходит через одно и то же положение в одном и том же направлении.

Простейшими и в то же время часто встречающимися являются гармонические колебания - такие колебания, которые происходят по закону синуса (косинуса).

В зависимости от характера воздействия, оказываемого на колеблющуюся систему, различают свободные (собственные) колебания, вынужденные колебания, автоколебания и другие. Рассмотрим свободные колебания.

Свободными называются колебания, которые происходят в системе, предоставленной самой себе, после того, как она однажды была выведена из положения равно­ве­сия. Различают неза­тухающие и затухаю­щие свободные коле­ба­ния, хотя, строго гово­ря, незатухающих сво­бод­ных колебаний в при­роде не бывает.

 
 


Рассмотрим сво­бодные колебания на примере пружинного маятника, представ­ля­ю­щего собой тело (материальную точку), подвешенное на пру­жи­не (рис. 6.1). В состо­янии равновесия сила тяжести тела Р = m g (m - масcа тела, g уско­ре­ние свободного паде­­ния) уравновешивается уп­ругой силой, дей­ству­­ющей на тело со сто­роны пружины F0 упр = k хо (k - коэффициент жесткости пружины, x0 - равновесное удли­не­ние пружины). Таким об­разом,

 

kx0 = mg. (6.1)

 

Если тело вы­ве­с­ти из состояния рав­но­ве­сия (например, от­тя­нуть вниз), а затем от­пу­стить, то оно начнет ко­лебаться. Это и есть сво­бодные колебания. Вы­ясним характер этих колебаний, пре­небре­гая пока силами тре­ния.

На колеблющееся те­ло по-прежнему дей­ствуют сила тяжести mg и упругая сила Fупр = - kх1, где x1 - общее удлинение пружины (см. рис.6.1), разное для различных моментов времени. Знак минус указывает на то, что упругая сила направлена в сторону, противоположную смещению. Следовательно, уравнение движения запишется так:

 

(6.2)

 

Или, учитывая равенство (6.1),

 

(6.3)

 

Обозначив (x - смещение тела от положения равновесия), перепишем выражение (6.3) в виде

 

или (6.4)

 

k и m - величины сугубо положительные, поэтому их отношение можно представить в виде квадрата некоторого числа тогда уравнение (6.4) запишется как

 

(6.5)

 

Решение уравнения (6.5) имеет вид

 

(6.6)

 

Выражение (6.6) называют уравнением колебаний. Здесь А и - постоянные, зависящие от начальных условий; А называют амплитудой колебаний, a - начальной фазой, ( w 0t+ a ) - фазой колебаний; - циклической частотой колебаний (число колебаний за секунд). Часто для характеристики колебаний указывают период колебаний – T ( время одного полного колебания) и частоту колебаний (число колебаний за единицу времени). Очевидно, что

 

(6.7)

 

Выражение (6.6) показывает, что при дан­ных условиях колебания являются гармоническими и незатухающими (рис.6.2).

Как уже отмечалось, строго неза­ту­хающих свободных колебаний не бы­ва­ет. Дело в том, что энергия колеб­лю­щей­ся системы постепенно расходуется на преодоление сил трения, которые все­гда имеют место, поэтому амплитуда ко­лебаний уменьшается. Говорят, что ко­лебания носят затухающий характер.

При небольших скоростях дви­же­ния тела сила трения пропорциональна скорости :

(6.8)

 

Уравнение движения маятника с учетом сил трения запишется так:

 

 

Или, введя обозначения и перенеся все слагаемые влево от знака равенства, получим

 

(6.9)

 

Решением уравнения (6.9) является выражение

 

, (6.10)

 

в котором - ци­кли­ческая частота свободных за­ту­ха­ющих колебаний; - ам­пли­туда колебаний, убывающая с те­чением времени по экспоненте; - начальная амплитуда. График уравнения (6.10) представлен на рис. 6.3. Величина характеризует скорость затухания. Она называется коэф­фи­ци­ентом затухания.

Видно, что b = 1 / te, где te - время колебаний, за которое ампли­туда уменьшилась в e раз (вре­мя релаксации).

Скорость затухания харак­те­ри­зуют и двумя другими вели­чинами:

1) декрементом затухания s = AN / AN+1 = e b Т , равным отно­ше­нию двух соседних (отстоящих по времени на период T) ампли­туд;

2) логарифмическим декре­мен­том затухания, равным, по опре­делению, натуральному ло­га­рифму от декремента затухания:

 

d = ln s = b T. (6.11)

 

Оказывается, d = 1/Ne, где Ne - число колебаний, за которое амплитуда уменьшается в е раз.

 

Описание установки, метод определения b

 

 
 


Установка (рис. 6.4) включает штатив 1, на кронштейне которого закреплена пружина 2. К нижнему концу пружины подвешена платформа 6 со съемными грузами 5. Верхний конец платформы снабжен указателем 4, который при смещении маятника скользит вдоль масштабной линейки 3 с зеркалом.

Для получения быстро затухающих колебаний платформу с грузами помещают в сосуд с водой. Коэффициент затухания определяют из следующих соображений: при затухающих колебаниях амплитуда N - го колебания связана с начальной амплитудой А0 соотношением

 

 

где tN - время N колебаний, за которое амплитуда уменьшилась от до AN. Отсюда

(6.12)

 

 







Дата добавления: 2014-10-29; просмотров: 745. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия