Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОСНОВЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ





С помощью логических операций над суждениями из заданной совокупности суждений можно строить различные сложные суждения. Такие логические операции рассматривает математическая логика. В ней принято суждения называть высказываниями.

 

Основные понятия алгебры логики

Математическая логика (теоретическая логика, символическая логика) — раздел математики, изучающий доказательства и вопросы оснований математики. Математическая логика – вторая, после традиционной логики, ступень в развитии формальной логики, применяющая математические методы и специальный аппарат символов и исследующая мышление с помощью исчислений (формализованных языков).

Математическая логика – это логика, развиваемая с помощью математических методов. Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.

Когда интересуются только синтаксисом, часто используют термин «формальная система». Объектом формальных систем являются строки текста (последовательности символов), с помощью которых записываются формулы.

Формальная система определена, если:

1. Задан алфавит (множество символов, используемых для построения формул).

2. Определено, какие именно строки считать формулами (остальные строки считаются просто бессмысленными).

3. Выделено множество формул, называемых аксиомами. Это – стартовые точки в выводах.

4. Задано множество правил вывода, которые позволяют из некоторой формулы (или множества формул) получать новую формулу.

Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями (простыми и сложными суждениями). Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Употребляемые в обычной речи слова и словосочетания " не", " и", " или", " если..., то", " тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание " Тимур поедет летом на море", а через В – высказывание " Тимур летом отправится в горы". Тогда составное высказывание " Тимур летом побывает и на море, и в горах" можно кратко записать как А и В. Здесь " и" – логическая связка, А, В – логические переменные, которые могут принимать только два значения – " истина" или " ложь", обозначаемые, соответственно, " 1" и " 0".

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:

НЕ Операция, выражаемая словом " не", называется отрицанием и обозначается чертой над высказыванием. Высказывание Ā истинно, когда A ложно, и ложно, когда A истинно. Пример. «Луна – спутник Земли» (А); «Луна – не спутник Земли» (Ā).

И Операция, выражаемая связкой " и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой «. » (может также обозначаться знаками ۸ или &). Высказывание А . В истинно тогда и только тогда, когда оба высказывания А и В истинны.

ИЛИ Операция, выражаемая связкой " или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.

ЕСЛИ-ТО Операция, выражаемая связками " если..., то", " из... следует", "... влечет...", называется импликацией (лат. implico – тесно связаны) и обозначается знаком →. Высказывание А → В ложно тогда и только тогда, когда А истинно, а В ложно.

РАВНОСИЛЬНО Операция, выражаемая связками " тогда и только тогда", " необходимо и достаточно", "... равносильно...", называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~. Высказывание А ↔ В истинно тогда и только тогда, когда значения А и В совпадают

Итак, нами рассмотрены пять логических операций: отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция.

Импликацию можно выразить через дизъюнкцию и отрицание:

 

А→ В =Ā v В.

 
 


Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

 

А↔ В = (Ā v В) . (В v А).

Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (" не"), затем конъюнкция (" и"), после конъюнкции – дизъюнкция (" или") и в последнюю очередь – импликация.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.

Всякое сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции, называется формулой алгебры логики.







Дата добавления: 2014-11-10; просмотров: 1139. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия