Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равносильные формулы алгебры логики





Некоторые формулы принимают значение " истина" при любых значениях истинности входящих в них переменных. Таковой будет, например, формула А v Ā, соответствующая высказыванию " Этот треугольник прямоугольный или косоугольный". Эта формула истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный. Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.

В качестве другого примера рассмотрим формулу А & Ā, которой соответствует, например, высказывание " Катя самая высокая девочка в классе, и в классе есть девочки выше Кати". Очевидно, что эта формула ложна, так как либо А, либо Ā обязательно ложно. Такие формулы называются тождественно ложными формулами или противоречиями. Высказывания, которые формализуются противоречиями, называются логически ложными высказываниями.

Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными. Равносильность двух формул алгебры логики обозначается символом " ". Замена формулы другой, ей равносильной, называется равносильным преобразованием данной формулы.

Важнейшие равносильности алгебры логики можно разбить на три группы.

I. Основные равносильности:

- законы идемпотентности

3. x & 1 x

4. x v 1 1

5. x & 0 0

6. x v 0 x

7. x & 0 – закон противоречия.

8. x v 1 – закон исключенного третьего.

9. x – закон снятия двойного отрицания.

- законы поглощения.

 

II. Равносильности, выражающие одни логические операции через другие:

Замечание. Из равносильностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

 

III. Равносильности, выражающие основные законы алгебры логики:

- коммутативность конъюнкции

- коммутативность дизъюнкции

- дистрибутивность конъюнкции относительно дизъюнкции.

- дистрибутивность дизъюнкции относительно конъюнкции.

Используя равносильности I, II, III групп можно часть формулы или формулу заменить равносильной ей формулой. Такие преобразования формул называются равносильными.

Формула А считается проще равносильной В, если она содержит меньше букв, меньше логических операций.

Примеры:

1. Упростить формулу .

Запишем цепочку равносильных формул:

Подробнее:

2. Доказать тождество

3. Доказать, что формула тождественно истинная.

 

Равносильности III группы говорят о том, что алгебра логики обладает коммутативными и ассоциативными законами относительно операций конъюнкции и дизъюнкции. Эти же законы имеют место и в алгебре чисел. Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел (раскрытие скобок, заключение в скобки, вынесение за скобки общего множителя).







Дата добавления: 2014-11-10; просмотров: 1451. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия