Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Равносильные формулы алгебры логики





Некоторые формулы принимают значение " истина" при любых значениях истинности входящих в них переменных. Таковой будет, например, формула А v Ā, соответствующая высказыванию " Этот треугольник прямоугольный или косоугольный". Эта формула истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный. Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.

В качестве другого примера рассмотрим формулу А & Ā, которой соответствует, например, высказывание " Катя самая высокая девочка в классе, и в классе есть девочки выше Кати". Очевидно, что эта формула ложна, так как либо А, либо Ā обязательно ложно. Такие формулы называются тождественно ложными формулами или противоречиями. Высказывания, которые формализуются противоречиями, называются логически ложными высказываниями.

Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными. Равносильность двух формул алгебры логики обозначается символом " ". Замена формулы другой, ей равносильной, называется равносильным преобразованием данной формулы.

Важнейшие равносильности алгебры логики можно разбить на три группы.

I. Основные равносильности:

- законы идемпотентности

3. x & 1 x

4. x v 1 1

5. x & 0 0

6. x v 0 x

7. x & 0 – закон противоречия.

8. x v 1 – закон исключенного третьего.

9. x – закон снятия двойного отрицания.

- законы поглощения.

 

II. Равносильности, выражающие одни логические операции через другие:

Замечание. Из равносильностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

 

III. Равносильности, выражающие основные законы алгебры логики:

- коммутативность конъюнкции

- коммутативность дизъюнкции

- дистрибутивность конъюнкции относительно дизъюнкции.

- дистрибутивность дизъюнкции относительно конъюнкции.

Используя равносильности I, II, III групп можно часть формулы или формулу заменить равносильной ей формулой. Такие преобразования формул называются равносильными.

Формула А считается проще равносильной В, если она содержит меньше букв, меньше логических операций.

Примеры:

1. Упростить формулу .

Запишем цепочку равносильных формул:

Подробнее:

2. Доказать тождество

3. Доказать, что формула тождественно истинная.

 

Равносильности III группы говорят о том, что алгебра логики обладает коммутативными и ассоциативными законами относительно операций конъюнкции и дизъюнкции. Эти же законы имеют место и в алгебре чисел. Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел (раскрытие скобок, заключение в скобки, вынесение за скобки общего множителя).







Дата добавления: 2014-11-10; просмотров: 1451. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия