Структурная схема системы Ebilock-950
Микропроцессорная централизация (МПЦ) Ebilock-950 предназначена для управления стрелками, светофорами и другими объектами на станции и является новой, экономически выгодной электронной системой. Она обеспечивает логическое и безопасное взаимодействие между сигналами, стрелками и поездами. Система обладает высокой гибкостью, экономической эффективностью и простотой. Модульная структура централизации одинаково подходит для больших и малых станций. Основные компоненты Ebilock-950: - центральная обрабатывающая система –– выполняет функции централизации, взаимодействуя с системой контроля и управления (местной или дистанционной); - система объектных контроллеров –– является интерфейсом к объектам на станции (стрелочные электроприводы, светофоры, рельсовые цепи и др.) и связывает их с центральной обрабатывающей системой. Объектные контроллеры размещаются в шкафах. Для адаптации системы, последующего ее проектирования, организации поставок оборудования, выполнения пусконаладочных работ и сервисного обслуживания было создано российско-шведское предприятие ООО «Бомбардье Транспортейшн Сигнал». Работы по адаптации и внедрению системы Ebilock-950 были организованы под руководством Департамента сигнализации, связи и вычислительной техники МПС РФ. Первым шагом стала разработка технического задания на микропроцессорную централизацию. Она была выполнена Научно-исследовательским институтом железнодорожной автоматики (НИИЖА), институтом Гипротранссигналсвязь (ГТСС) и испытательной лабораторией Петербургского государственного университета путей сообщения (ПГУ ПС). При адаптации системы Ebilock-950 к условиям российских железных дорог было принято решение замыкать поездной маршрут обычными командами только при выполнении следующих условий: свободности пути, незамкнутости секций, контроля ходовых и охранных стрелок, отсутствии маневрового маршрута до маневрового светофора, ограждающего поездной маршрут, и т. д. Были введены функции блокировки стрелок, сигналов, секций и пути (аналогично красному щиту). В целях удовлетворения техническим требованиям и технологии работы российских железных дорог в системе используется напольное оборудование и релейная аппаратура российского производства: электроприводы, светофоры, устройства ограждения переездов, контроля состояния подвижного состава и др. Кроме того, сохранены требования и принципы управления напольными устройствами в том виде, в каком они применялись в релейных системах. Сохранились принципы построения систем регулирования движения поездов на перегонах (автоматическая и полуавтоматическая блокировка), а также локомотивной сигнализации непрерывного типа. Для этого было переработано программное и аппаратное обеспечение системы. Для станций разработаны интерфейсы увязки с автоблокировкой, четырехпроводной схемой смены направления, переездом, со схемами кодирования, системами очистки стрелок и САУТ и др. Особое внимание следует обратить на систему электропитания. До настоящего времени не существовало надежной системы, обеспечивающей гарантированную работу электронных устройств СЦБ. Грозы, короткие замыкания в контактной сети и другие помехи приводили к непредсказуемым отказам, что сдерживало внедрение электронных устройств. В системе Ebilock-950 используется мощный источник бесперебойного питания с необслуживаемой аккумуляторной батареей, от которого запитываются как электронные устройства, так и рельсовые цепи, электроприводы, сигналы, реле. Кроме того, в системе применяется специальная аппаратура защиты от источников помех с линии, а правила заземления устройств имеют некоторые отличия. Система Ebilock-950 позволяет использовать существующие рельсовые цепи, сигналы и стрелочные электроприводы. Через релейный интерфейс система может быть интегрирована в существующие системы диспетчерской централизации, связана с системами автоблокировки, управления переездной сигнализацией и др. Основываясь на принципе децентрализованного размещения аппаратуры, система способствует значительной экономии кабеля. Электронные компоненты системы имеют существенно меньшие габариты в сравнении с релейными системами. Их высокая надежность позволяет сократить эксплуатационные расходы. Любая микропроцессорная система Ebilock-950 строится на элементной базе с использованием готовых микросхем зарубежного производства. Любую микропроцессорную систему можно представить как многоуровневую систему (3, 4, 5 уровней), где каждый уровень имеет свои определенные задачи и функциональные возможности. Представим обобщенную структурную схему любой микропроцессорной системы (рис. 1.1).
Рис. 1.1. Обобщенная структурная схема микропроцессорной системы Ядром системы Ebilock-950 (рис. 1.2) является центральная обрабатывающая система, которая безопасным способом осуществляет все взаимозависимости, присущие электрическим централизациям стрелок и сигналов.
Журнал АРМ ШН событий АРМ ДСП АРМ ДСП I уровень Пульт резервного управления
Центральный процессор II уровень Петля связи
1 2 12 петлей связи
III уровень
до 15 концентраторов
до 8 объектных контролеров IV уровень
СТАНЦИОННЫЕ ОБЪЕКТЫ Стрелки, сигналы, рельсовые цепи, переезды и др.
Рис. 1.2. Структурная схема Ebilock-950 Центральная обрабатывающая система обеспечивает: - трансформацию команд от системы контроля и управления в приказы, которые в безопасном виде передаются стрелкам, светофорам и другим устройствам; - замыкание объектов в маршруте; - автоматическое и искусственное размыкание маршрутов. Центральный процессор Ebilock-950 состоит из двух компьютеров: один из них находится в работе, второй –– в горячем резерве. В процессе работы идет непрерывная передача информации с основного компьютера на резервный, поэтому в случае выхода основного компьютера из строя происходит немедленное переключение на резерв с автоматической перезагрузкой неисправного в течение 1, 5 мин. Затем происходит обратное переключение. Если сбой в работе основного компьютера не позволяет его использовать, система продолжает работать на резервном до тех пор, пока не будет устранена неисправность. Оба компьютера связаны через петли связи с концентраторами, расположенными в модулях объектных контроллеров. При переключении компьютеров происходит автоматическая перекоммутация петель связи с одного на другой. Для каждого объекта станции (стрелок, сигналов и т. д.) есть свой объектный контроллер (ОК). Зависимости между объектами реализуются только программой в компьютере централизации, поэтому физических соединений между ОК для выполнения зависимостей не производится. Емкость системы по количеству петель связи и объектных контроллеров характеризуется следующими параметрами: - максимальное количество концентраторов в каждой петле связи –– 15; - максимальное количество ОК, подключенных к концентра-тору, –– 8; - максимальное количество ОК на петлю связи –– 120; в системе –– 1440.
|