Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы оптимизации кольцевых развозочных маршрутов





 

Решение подобных задач рассмотрим на следующем примере развозки товаров. В соответствии с заказами потребителей городская овощная база обязуется 24.06.2012 г. обеспечить доставку овощей и фруктов согласно схеме представленной на рисунке 6.4. При этом известно, что удовлетворение потребностей соответствующих потребителей, которые отражены в таблице 6.8, будут осуществляться посредством автотранспорта грузоподъемностью 4 тонны. Требуется найти m замкнутых путей l1, l2, …, lk, …, lm из единственной общей точки К, чтобы выполнялось следующее условие:

 

 

 
 

 

 


Рисунок 6.4 – Схема взаимного размещения

овощной базы и потребителей:

К – овощная база; М1– М12 – потребители

 

 

Таблица 6.8 – Потребности заказчиков в овощах и фруктах

Пункты назначения Потребность, тонн Пункты назначения Потребность, тонн
М1   М7  
М2   М8  
М3   М9  
М4   М10  
М5   М11  
М6   М12  

 

Подчеркнем, что существует несколько методов решения подобных задач: математического моделирования, графический и комбинированный.

І. Рассмотрим алгоритм реализации метода математического моделирования.

1. Строится кратчайшая сеть, связующая товарную базу и все пункты назначения без замкнутых контуров, начиная с пункта, который отстоит на минимальном расстоянии от товарной базы (в нашем случае это пункт М5) (рисунок 6.5). Далее сеть строится таким образом, чтобы совокупный путь, соединяющий все пункты назначения и товарную базу (овощную базу К), был минимальный.

Рисунок 6.5 – Кратчайшая сеть, связующая овощную базу и пункты назначения

 

2. Затем по каждой ветви сети, начиная с пункта, наиболее удаленного от товарной базы К (считая по кратчайшей связующей сети – это пункт М10), группируются пункты на маршруты с учетом количества ввозимого груза и грузоподъемности (вместимости) развозочного автотранспорта. При этом сумма грузов по группируемым пунктам маршрута должна быть равной или немного меньше грузоподъемности автомобиля, а общее число автомобилей – минимально необходимым (таблица 6.9).

 

Таблица 6.9 – Предварительные маршруты объезда пунктов назначения

 

№ маршрута Пункты назначения Потребность в продукции, тонн
  М10  
М12  
  Итого: 4
  М11  
М9  
М6  
М4  
  Итого: 4
  М4  
М8  
  Итого: 4
  М7  
М3  
М2  
  Итого: 4
  М2  
М1  
М5  
  Итого: 4

 

3. Определяется рациональный порядок объезда пунктов каждого маршрута (на примере маршрута № 2). Для этого строится таблица-матрица, в которой по диагонали размещаются пункты, включаемые в маршрут, и начальный пункт К, а в соответствующих клетках – кратчайшее расстояние между ними согласно рисунку 6.4 (таблица 6.10).

Таблица 6.10 – Таблица-матрица маршрута № 2

 

Номер строки К        
    М11      
      М9    
        М6  
          М4
Сумма          

 

Начальный маршрут строим для трех пунктов матрицы, имеющих наибольшие размеры сумм, показанных в строке (37; 35; 33), то есть пункты К, М11, М4. Для включения последующих пунктов выбираем из оставшихся пункт, имеющий наибольшую сумму – это пункт М6 (сумма 29), и определяем, между какими пунктами его следует включить – К и М11, М11 и М4, М4 и К. Чтобы это решить, для каждой пары пунктов необходимо найти размер приращения маршрута по следующей формуле:

 

 

где С – расстояние, км;

i – индекс включаемого пункта;

k – индекс первого пункта из пары;

p – индекс второго пункта из пары.

 

При включении пункта М6 между первой парой пунктов К и М11 определяем размер приращения ∆ КМ11 при условии, что i – М6, k – К, p – М11.

Получаем:

 

 

Таким же образом определяем приращения ∆ М11М4 = 0; ∆ М4К = 2. Так как ∆ М11М4 = min, следовательно, пункт М6 должен располагаться между пунктами М11 и М4 (К–М11–М6–М4–К). Используя этот метод, определяем, между какими пунктами должны располагаться пункт М9. После проведенных расчетов получаем следующий порядок объезда пунктов-потребителей предварительного маршрута № 2: К–М9–М11–М6–М4–К.

Важно подчеркнуть, что движение по полученному кольцевому маршруту можно осуществлять в двух направлениях: начиная обслуживание с пункта М9 или с пункта М4. Пути движения в обоих направлениях будут равны между собой (32 км), однако различными будут транспортные работы. Так, транспортная работа для направления движения с начальным пунктом М9 будет равна 59 т-км (7км·4т + +3км·3т + 10км·2т + 2км·1т), тогда как для направления движения с начальным пунктом М4 – соответственно 63 т-км (10·4 + 2·3 + 7·2 +3·1) (см. рисунок 6.4). Следовательно, более рациональным будет направление движения по маршруту с начальным пунктом М9, так как при этом будет проделана меньшая транспортная работа.

Аналогичные расчеты проводятся для оставшихся маршрутов № 1, № 3, № 4 и № 5.

4. Составляется сводная маршрутная ведомость (таблица 6.11).

 

Таблица 6.11 – Сводная маршрутная ведомость

 

№ мар-шрута Последовательность выполнения маршрута Расшифровка   Протяженность пути движения на маршруте, км
  К→ М10→ М12→ К К – овощная база М10 – магазин № 10 М12 – магазин № 12  
  К→ М9→ М11→ М6→ М4→ К К – овощная база М9 – магазин № 9 М11 – магазин № 11 М6 – магазин № 6 М4 – магазин № 4  
  К→ М4→ М8→ К К – овощная база М4 – магазин № 4 М8 – магазин № 8  
  К→ М2→ М3→ М7→ К К – овощная база М2 – магазин № 2 М3 – магазин № 3 М7 – магазин № 7  
  К→ М5→ М2→ М1→ К К – овощная база М5 – магазин № 5 М2 – магазин № 2 М1 – магазин № 1  

Анализ таблицы 8.13 показывает, что совокупный пробег пяти автомобилей на пяти маршрутах в соответствии с проведенными оптимизационными расчетами согласно методу математического моделирования составляет 139 км.

 

Анализ алгоритма и порядок оптимизации кольцевых развозочных маршрутов указывает на высокую трудоемкость расчетных работ, что не позволяет в должной мере использовать подобный подход на практике. Данный факт обуславливает необходимость применения представленного ниже алгоритма.







Дата добавления: 2014-11-10; просмотров: 2467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия