Приборы для измерения скорости движения воздуха
Измерение скорости движения воздуха может производиться в разных местах рабочего помещения в зависимости от целей исследования. Для измерения скорости движения воздуха используют анемометры различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха. Замер скорости движения воздуха проводят различными видами анемометров: крыльчатыми (скорость потока от 0, 3 до 0, 5 м/с), чашечными и индукционными (скорость в пределах 1–30 м/с), термоанемометрами и кататермометрами (скорость не больше 0, 5 м/с). Термоанемометры позволяют измерять незначительные колебания потоков воздуха и температуры по объему помещения. Анемометры представлены на рисунке 2.4. Для измерения интенсивности теплового излучения используют актинометры и радиометры.
Пересчёт полученного числа оборотов в 1 с на скорость воздушного потока в м/с производится с помощью графиков, представленных на рисунках 2.5а и 2.5б, где по вертикальной оси отложено число оборотов 1 с, а по горизонтали – скорость воздушного потока в м/с.
Рис. 2.5. Графики определения скорости движения воздуха по анемометру: а – чашечному; б – крыльчатому
Анемометры обладают большой инерцией и начинают работать при движении воздуха со скоростью около 0, 5 м/с; давление, создаваемое потоком воздуха меньшей скорости, не в состоянии преодолеть сопротивление оси колеса с крылышками или чашек, поэтому для измерения малых скоростей движения воздуха в помещениях используются кататермометры и термоанемометры. Для определения суммарной охлаждающей способности воздушной среды, для замера малых скоростей движения воздуха (до 2 м/с) пользуются прибором, называемым кататермометром. Шаровой кататермометр, показанный на рисунке 2.6, представляет собой спиртовой термометр с двумя резервуарами – шаровым внизу и цилиндрическим вверху со шкалой деления от 31 до 41 °С.
Количество теплоты в милликалориях, теряемой с 1 см2 резервуара кататермометра, называется его фактором F, величина которого указывается на приборе.
Скорость движения воздуха определяется по формулам, выбираемым в зависимости от величины f /Δ t. Величина Δ t – это разность между средней температурой кататермометра (36, 5 °С) и температурой окружающего воздуха. Если Если Определение суммарной охлаждающей силы воздушной среды с помощью кататермометра производится следующим образом. Прибор погружают в воду, нагретую до 60–70 °С (но не более 80 °С во избежание закипания спирта в приборе и разрыва резервуара), держат его в воде до заполнения спиртом на 1/3 или 1/4 объёма верхнего расширения капилляра. Затем кататермометр вынимается из воды, тщательно вытирается и подвешивается в точке замера. Прибор охлаждается окружающим воздухом. При достижении столбиком спирта 38 °С включают секундомер и замеряют время охлаждения прибора (Т, с) на 3° (от 38 °С до 35 °С). Далее производятся расчёты. Скорость движения воздуха менее 1 м/с также измеряется термоанемометрами. В основу работы термоанемометра положен принцип охлаждения датчика, находящегося в воздушном потоке и нагреваемого электрическим током. Датчик представляет собой полупроводниковое микросопротивление. Питание прибора осуществляется либо от сети напряжением 220 В, либо от малогабаритных батареек напряжением 1, 5 В. Термоанемометром измеряют скорости движения воздуха от 0, 03 до 5 м/с при температуре от 1 до 60 °С. С помощью термоанемометра можно измерить и температуру воздуха помещения, для чего производят соответствующее переключение прибора. Изучение барометрического давления при исследовании метеорологических условий позволяет, с одной стороны, полнее учесть зависимость температуры и относительной влажности воздуха от барометрического давления (при повышении давления температура повышается), а с другой стороны, существенно влияние этого показателя на характерные эндотермические (испарение влаги) и экзотермические (конденсация пара) процессы, оказывающие большое влияние на метеорологический комфорт. Барометр-анероид (рис. 2.7), предназначен для измерений атмосферного давления в пределах от 600–800 мм рт. ст.
Рис. 2.7. Барометр-анероид: 1 – корпус; 2 – анероид; 3 – стекло; 4 – шкала; 5 – металлическая пластина; 6 – стрелка; 7 – ось
Главная часть барометра-анероида – лёгкая, упругая, полая внутри металлическая коробка (анероид) 2 с гофрированной (волнистой) поверхностью. Воздух из коробочки откачан. Её стенки растягивает пружинящая металлическая пластина 5. К ней при помощи специального механизма прикреплена стрелка 6, которая насажена на ось 7. Конец стрелки передвигается по шкале 4, размеченной в мм рт. ст. Все детали барометра помещены внутрь корпуса 1, закрытого спереди стеклом 3. Значение давления определяется как алгебраическая сумма отсчёта по шкале и поправок, которые указаны в паспорте прибора. Интенсивность теплового излучения измеряют актинометрами различных конструкций, действие которых основано на поглощении лучистой энергии и превращении её втепловую, количество которой регистрируется различными способами. Обеспечение требуемых нормами метеорологических условий и чистоты воздуха в рабочей и обслуживаемой зонах помещений устраивается системами вентиляции, кондиционированием воздуха и отоплением. Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на место удалённого свежего чистого воздуха. Промышленную вентиляцию применяют для технических и санитарно-гигиенических целей. Для технических целей её используют в различных технологических процессах, в санитарно-гигиенических целях вентиляцию применяют для создания нормальных условий труда путём правильного воздухообмена в производственных помещениях. Воздухообмен осуществляется путём удаления из помещения воздуха, не отвечающего требованиям санитарных норм, и подачи чистого свежего воздуха. В этом процессе количество удаляемого и подаваемого воздуха должно быть равно. По способу перемещения воздуха различают два основных вида вентиляции: естественную и механическую. Выбор системы вентиляции зависит от особенностей производственного процесса, типа здания, характера выделяющихся вредностей и необходимой кратности воздухообмена. Вентиляцию называют естественной, если воздухообмен осуществляется путём использования естественного движения воздуха в результате теплового или ветрового напора. Тепловой напор создаётся в результате наличия разности температур или разности удельных весов внутреннего и наружного воздуха, а ветровой – движением наружного воздуха. Естественную вентиляцию называют аэрацией, когда естественный воздухообмен организован, т.е. осуществляется путём регулирования притока и вытяжки, за счёт открытия форточек, стенных клапанов, фонарей. На практике имеет место и неорганизованный способ естественной вентиляции (инфильтрация), т.е. когда воздухообмен осуществляется за счёт случайных отверстий и щелей в оконных и дверных проёмах, в стенах и перекрытиях зданий и возможен в помещениях, где необходим не более, чем однократный обмен воздуха в час. При механической вентиляции воздухообмен достигается за счёт разности давлений, создаваемой вентилятором, который приводится в движение электромотором. Механическая вентиляция применяется в случаях, когда тепловыделения в цехе недостаточны для систематического использования аэрации, а также, если количество или токсичность выделяющихся в помещение вредных веществ требует поддержания постоянного воздухообмена независимо от внешних метеорологических условий. При механической вентиляции воздух почти всегда подвергается предварительной обработке. В зимнее время приточный воздух подогревается, а в летнее – охлаждается. В необходимых случаях воздух увлажняется или осушается. Если удаляемый (подаваемый) механической вентиляцией воздух запылён или содержит в большом количестве вредные газы и пары, он подвергается очистке. Вентиляционные системы по их назначению подразделяются на вентиляцию приточную, вытяжную и приточно-вытяжную, а также рабочую и аварийную. В зависимости от места применения различают вентиляцию: общеобменную, предназначенную для обмена воздуха всего помещения, и местную, обеспечивающую приток или вытяжку воздуха непосредственно на рабочем месте, т.е. у мест выделения вредностей. В тех помещениях, где возможно внезапное поступление токсических или взрывоопасных веществ, устраивается аварийная вытяжная вентиляция, включение которой производится автоматически от показаний газоанализаторов, настроенных на допустимую по санитарным и противопожарным требованиям концентрацию газов или паров. Независимо от наличия искусственной вентиляции во всех помещениях необходимо предусматривать также устройство проёмов в ограждениях (форточки, фрамуги) для проветривания. Механическая вентиляция может быть устроена таким образом, что в вентилируемом помещении поддерживаются постоянные, заранее заданные условия температуры, влажности, чистоты воздуха независимо от наружных условий и колебаний режима технологического процесса. Такая вентиляция называется кондиционированием воздуха. Обычно кондиционированный воздух до поступления в помещение проходит тепловлажную обработку в установках, называемых кондиционерами, которые состоят из устройств нагрева воздуха – калориферов, устройств охлаждения воздуха – поверхностных или контактных воздухоохладителей, устройств осушения воздуха. Воздух в калориферах получает тепло от оребрённых или гладких поверхностей трубок, по которым протекает теплоноситель – вода или пар. В поверхностных воздухоохладителях воздух отдаёт тепло поверхностям трубок, по которым пропускается холодная вода или другой холодоноситель. В контактных охладителях происходит непосредственный контакт охлаждаемого воздуха с водой, обычно воздух проходит через дождевое пространство камеры орошения, в которой форсунками разбрызгивается охлаждённая вода. Осушение воздуха производится влагопоглощающими веществами: твёрдыми (силикатель), жидкими (растворы хлористого лития, хлористого кальция). Количественно любой способ воздухообмена можно охарактеризовать кратностью воздухообмена, т.е. величиной, показывающей, сколько раз в единицу времени (в минуту, час) происходит полная смена всего объёма воздуха в помещении. Требования безопасности, предъявляемые к системе вентиляции, изложены в ССБТ ГОСТ 12.4.021–75: - вентиляторы вытяжных систем, обслуживающих помещения с производствами категорий А, Б должны быть выполнены из материалов, не вызывающих искрообразования; - взрывоопасность и пожароопасность производственных помещений не должна увеличиваться применением вентиляционных систем; - вентиляционные системы, обслуживающие помещения с производствами категорий А, Б, где возможно появление статического электричества, должны обеспечивать электростатическую безопасность и иметь заземление. В помещениях с постоянным или длительным (более 24 часов) пребыванием людей следует предусматривать в холодный период года поддержание требуемых температур внутреннего воздуха путём подачи тепла системами отопления. Системы отопления зданий должны удовлетворять следующим требованиям, т.е. обеспечивать: - равномерный нагрев воздуха помещения в течение отопительного периода; - безопасность в отношении пожара и взрывов; - возможность регулирования; - увязку с системами вентиляции; - уровни звуковых давлений в пределах нормы; - наименьшее загрязнение атмосферного воздуха. Системы отопления разделяются на местные и центральные. В местных системах отопления теплогенератор (котёл), теплопроводы (трубы) и нагревательные приборы (батареи) объединены и находятся в отапливаемом помещении. В центральных системах отопления выработка тепла происходит в каком-либо центре (в котельной), а теплоноситель к нагревательным приборам, находящимся в отапливаемом помещении, подаётся по трубопроводам. В зависимости от вида используемого теплоносителя отопление бывает водяное, паровое и воздушное. Системы водяного отопления подразделяются: - по принципу подводки теплоносителя к нагревательным приборам – на двухтрубные и однотрубные; - на системы с естественным побуждением (циркуляцией) и искусственным побуждением – с применением циркуляционного насоса; - на системы с верхней разводкой и системы с нижней разводкой. Водяное отопление более безопасно (по отношению к паровому), т.к. температура нагревательных приборов не превышает 80–90 °С. Системы парового отопления подразделяются на системы с верхней разводкой и системы с нижней разводкой. В паровых системах отопления водяной пар, конденсируясь в нагревательных приборах, выделяет скрытую теплоту парообразования. Это тепло передаётся в помещение через стенки нагревательного прибора, а конденсат по конденсатопроводу стекает снова в котел для повторного использования. Недостатки парового отопления: высокая температура нагревательных приборов, которая может привести к возгоранию легковоспламеняющихся веществ и пыли, и как следствие, к ожогам обслуживающего персонала. Системы воздушного отопления могут быть отопительными, в которых осуществляется полная рециркуляция воздуха, и отопительно-вентиляционными – используемые свежий воздух. Воздушное отопление обладает следующими преимуществами: гигиеничностью, безопасностью, быстрым повышением температуры воздуха в помещении, исключением множества местных нагревательных приборов. Воздушное отопление целесообразно применять для отопления крупных производственных помещений. Основой аттестации рабочих мест по условиям труда является соответствие параметров воздуха данным, приведённым в таблицах 2.6, 2.7, 2.8 и 2.9, характеризующим класс условий труда по показателям микроклимата для производственных помещений и открытых территорий в различные периоды года.
Таблица 2.6
|