Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Випадок двох класів





 

Розділяюча функція, що представляється лінійною комбінацією компонент вектора , може бути записана в наступному вигляді:

, (1)

де називається ваговим вектором, а величиною порогу. В основі лінійного класифікатора, при розділенні об’єктів на два класи, лежить наступне розділяюче правило: прийняти рішення , якщо , і , якщо . Таким чином, приписується до , якщо скалярний добуток перевищує поріг . Якщо , то припускають, що можна віднести до будь-якого з класів, хоча переважно, таку ситуацію вважають невизначеною.

Рівняння визначає поверхню рішень, яка відокремлює точки, що відповідають рішенню , від точок, яким відповідає рішення . Коли функція лінійна, дана поверхня є гіперплощиною. Якщо і , і належать до поверхні рішень, то справедливим є наступний вираз: , або , так що є нормаллю по відношенню до будь-якого вектора, що лежить в гіперплощині. В загальному гіперплощина ділить простір ознак на два підпростори: область рішень для і область рішень для . Оскільки , якщо знаходиться в області , то з цього випливає, що нормальний вектор направлений в сторону . В цьому випадку інколи говорять, що будь-який вектор , який знаходиться в області , лежить на додатній стороні гіперплощини , а будь-який вектор , який знаходиться в області , лежить на від’ємній стороні .

Розділяюча функція представляє собою алгебраїчну відстань від до гіперплощини. Це стає більш очевидним, якщо виразити в наступному вигляді:

, (2)

де – нормальна проекція на гіперплощина , а – відповідна алгебраїчна відстань, додатня, якщо знаходиться з додатньої сторони гіперплощини, і від’ємна, якщо знаходиться з від’ємної сторони гіперплощини. Тоді, оскільки ,

, (3)

або

. (4)

Зокрема, відстань від початку координат до гіперплощини виражається відношенням . Якщо , початок координат знаходиться з додатної сторони ; якщо – з від’ємної сторони. Якщо , то функція стає однорідною по відношенню по відношенню до , і гіперплощина проходить через початок координат.

 

 

Рис. 1. Лінійна границя областей рішень .

 

Таким чином розділяюча функція ділить простір ознак поверхнею рішень, яка представляє собою гіперплощину. Спосіб орієнтації даної поверхні задається нормальним вектором , а її положення – величиною порогу .

 







Дата добавления: 2014-11-10; просмотров: 838. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия