Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Побудова розділяючої функції





 

Мета роботи. Знайти параметри розділяючої лінії та продемонструвати розподіл об’єктів на різні класи.

 

Суть роботи. Для окреслення чітких границь класів шукають функцій , таких, що кожен об’єкт, представлений як вектор може бути віднесений до свого, конкретно визначеного класу, тобто . Такі функції називають розділяючи ми або дискримінант ними. Якщо не задати апріорі ніяких додаткових властивостей функцій для , то знайти їх дуже складно. Тому переважно використовують в таких випадках функції які мають деякі прості властивості. Наприклад лінійні розділяючи функції виду

. (6)

Тоді рівняння границі між класами і або , де . Очевидно, що останнє рівняння є рівнянням гіперплощини в просторі ознак . Приймемо . Тоді задача побудови розділяючої гіперплощини полягає в знаходженні чисел , таких, що для деяких , і має місце рішаючи правило

(7)

де і – класи об’єктів.

Якщо не припускати існування гіперплощини, яка розділяє два класи, то лінійна рішаючи функція повинна будуватися так, щоб число неправильних розпізнавань елементів для відомої послідовності було мінімальним.

У випадку, коли , можна вважати, що лінійна розділяюча функція будується спочатку для відокремлення об’єктів першого класу (образу) від усіх інших класів. Далі процедура побудови розділяючої функції повторюється на множині решти об’єктів з метою виділення другого класу і т.д. оскільки аналогічне міркування можна провести для будь-якої задачі розпізнавання, то це значить, що число класів на які класифікуються об’єкти завжди можна вважати рівним двом.

В найпростішому випадку задача зводиться до побудови розділяючої лінії. Проведена на площині така лінія ділить площину на дві області таким чином, що двомірні об’єкти одного типу будуть при їх розпізнаванні локалізуватися над цією лінією, а інші – під нею. Очевидно не виключається випадок, коли точки, які символізують об’єкти можуть належати цій прямій, тобто маємо ще й третій клас. Проте, як правило, таку ситуацію переважно вважають невизначеною, а самі об’єкти або піддають додатковому аналізу або відкидають.

Рівняння прямої, що проходить через дві дані точки і має вид

. (8)

Кутовий коефіцієнт прямої

. (9)

Нахил прямої, що проходить через точки і до осі визначається кутом

. (10)

Нормальне рівняння прямої

, (11)

перпендикуляром до прямої з початку координат і віссю , як показано на рис. 3., причому .

Рис. 5. Приклад розділяючої лінії.

 

Нормальне рівняння отримують перемноженням звичайного рівняння на нормуючий множник, тобто: загальне рівняння множать на , причому знак є протилежним до знака . Відстань від точки до прямої рівна . В залежності від значень координат значення може мати різні знаки. Якщо , то точка і початок координат знаходяться по різні боки прямої, а якщо то по один бік. Іншими словами, в першому випадку точки розташовані над прямою, а в другому – під прямою. Ця властивість і використовується для побудови алгоритмів розпізнавання, які працюють за принципом розділяючої поверхні.

 







Дата добавления: 2014-11-10; просмотров: 910. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия