Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Побудова розділяючої функції





 

Мета роботи. Знайти параметри розділяючої лінії та продемонструвати розподіл об’єктів на різні класи.

 

Суть роботи. Для окреслення чітких границь класів шукають функцій , таких, що кожен об’єкт, представлений як вектор може бути віднесений до свого, конкретно визначеного класу, тобто . Такі функції називають розділяючи ми або дискримінант ними. Якщо не задати апріорі ніяких додаткових властивостей функцій для , то знайти їх дуже складно. Тому переважно використовують в таких випадках функції які мають деякі прості властивості. Наприклад лінійні розділяючи функції виду

. (6)

Тоді рівняння границі між класами і або , де . Очевидно, що останнє рівняння є рівнянням гіперплощини в просторі ознак . Приймемо . Тоді задача побудови розділяючої гіперплощини полягає в знаходженні чисел , таких, що для деяких , і має місце рішаючи правило

(7)

де і – класи об’єктів.

Якщо не припускати існування гіперплощини, яка розділяє два класи, то лінійна рішаючи функція повинна будуватися так, щоб число неправильних розпізнавань елементів для відомої послідовності було мінімальним.

У випадку, коли , можна вважати, що лінійна розділяюча функція будується спочатку для відокремлення об’єктів першого класу (образу) від усіх інших класів. Далі процедура побудови розділяючої функції повторюється на множині решти об’єктів з метою виділення другого класу і т.д. оскільки аналогічне міркування можна провести для будь-якої задачі розпізнавання, то це значить, що число класів на які класифікуються об’єкти завжди можна вважати рівним двом.

В найпростішому випадку задача зводиться до побудови розділяючої лінії. Проведена на площині така лінія ділить площину на дві області таким чином, що двомірні об’єкти одного типу будуть при їх розпізнаванні локалізуватися над цією лінією, а інші – під нею. Очевидно не виключається випадок, коли точки, які символізують об’єкти можуть належати цій прямій, тобто маємо ще й третій клас. Проте, як правило, таку ситуацію переважно вважають невизначеною, а самі об’єкти або піддають додатковому аналізу або відкидають.

Рівняння прямої, що проходить через дві дані точки і має вид

. (8)

Кутовий коефіцієнт прямої

. (9)

Нахил прямої, що проходить через точки і до осі визначається кутом

. (10)

Нормальне рівняння прямої

, (11)

перпендикуляром до прямої з початку координат і віссю , як показано на рис. 3., причому .

Рис. 5. Приклад розділяючої лінії.

 

Нормальне рівняння отримують перемноженням звичайного рівняння на нормуючий множник, тобто: загальне рівняння множать на , причому знак є протилежним до знака . Відстань від точки до прямої рівна . В залежності від значень координат значення може мати різні знаки. Якщо , то точка і початок координат знаходяться по різні боки прямої, а якщо то по один бік. Іншими словами, в першому випадку точки розташовані над прямою, а в другому – під прямою. Ця властивість і використовується для побудови алгоритмів розпізнавання, які працюють за принципом розділяючої поверхні.

 







Дата добавления: 2014-11-10; просмотров: 910. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия