Основи байєсівського підходу
Основна перевага статистичних методів розпізнавання полягає в тому, що є можливість одночасного врахування ознак різної фізичної природи, оскільки вони характеризуються безрозмірними величинами – ймовірностями їх появи при різних станах системи. Серед методів розпізнавання метод оснований на узагальненій формулі Байєса незважаючи на свою простоту є досить ефективним. До недоліків цього методу відносять: необхідність великих обсягів (статистично достатніх) попередньої інформації та низька чутливість до варіантів рішень, які є рідкісними подіями. Проте у випадках, коли обсяг статистичних даних дозволяє застосувати метод Байєса, його доцільно використовувати як один з найбільш надійних і ефективних методів. Суть методу полягає в наступному. Нехай в результаті контролю працездатності системи, який полягає в розпізнаванні функціональних станів цієї системи виявлено деяку ознаку , де – множина ознак, і на цій підставі прийнято варіант рішення, тобто поставлено діагноз , де – множина варіантів діагнозів. Імовірність сумісної появи подій – розпізнано ознаку і поставлено діагноз – може бути визначена як . (12) Тоді, імовірність – постановка даного діагнозу при розпізнаванні ознаки визначається з співвідношення . (13) Співвідношення (13) називають формулою Байєса. Для користування цією формулою дуже важливо визначити точний смисл усіх величин, які в неї входять. – імовірність діагнозу , яка визначається на основі статистичних даних (апріорна імовірність рішення). Наприклад, якщо попередньо досліджено об’єктів і для об’єктів було прийнято рішення , то . – імовірність появи ознаки в об’єктів, для яких було прийнято рішення , тобто, якщо серед об’єктів, для яких прийнято рішення , ознака , виявлена у об’єктів, то . – імовірність появи ознаки у всіх об’єктів незалежно від того чи було прийняте рішення чи ні, тобто якщо з загального числа об’єктів ознака була виявлена в об’єктів, то . Для прийняття рішення спеціальне обчислення імовірності не потрібне, оскільки відомі для усіх можливих станів значення і визначають величину . – імовірність прийняття рішення після того як стало відомо про наявність в розпізнаваного об’єкта ознаки (апостеріорна імовірність рішення). Якщо розпізнавання здійснюється на підставі комплексу ознак , причому кожна ознака може бути представлена декількома градаціями . Такий комплекс ознак є фактично формалізованим описом еталону, з допомогою якого здійснюють ідентифікацію знайдених, подібних до нього об’єктів, і які відповідають рішенням стосовно вибраного діагнозу . В результаті розпізнавання об’єктів, явищ, ситуацій стають відомими значення реалізацій кожної з виявлених і розпізнаних ознак , а отже і всього комплексу . Формула Байєса для комплексу ознак має вид , (14) де – імовірність рішення, на підставі якого ставиться діагноз , після того, як стали відомі результати розпізнавання за набором ознак , а –попередня ймовірність рішення (на основі попередньої статистики). Якщо кількість ознак в комплексі , то значення ймовірності визначають з допомогою співвідношень: у випадку залежних ознак , (15) або у випадку незалежних ознак . (16) При великій кількості ознак в більшості практичних задач можна припустити незалежність ознак навіть при істотних кореляційних зв’язках між ними. Імовірність розпізнавання комплексу ознак рівна . (17) Тоді, враховуючи (15) узагальнена формула Байєса матиме вид , (18) де може бути визначена з допомогою (15) або (16). Очевидно, що має мати місце умова . Оскільки один з діагнозів обов’язково реалізується, а реалізація одночасно двох і більше неможлива. Діагностична матриця. При практичному застосуванні методу Байєса в першу чергу складають діагностичну матрицю (таблиця 1) на основі попереднього статистичного матеріалу (апріорної інформації), в якій фіксуються значення ознак, що відповідають різним поставленим діагнозам.
Процес навчання в методі Байєса полягає у формуванні саме діагностичної матриці, апріорні ймовірності діагнозів. Крім того, діагностична матриця може уточнюватись в процесі діагностики. Для цього крім значень необхідно запам’ятовувати і такі величини: – загальне число об’єктів, використаних для формування діагностичної матриці; – число об’єктів з діагнозом ; – число об’єктів з діагнозом , розпізнаних за ознакою .тоді, якщо поступає новий об’єкт з діагнозом то відбувається коректування попередніх апріорних ймовірностей діагнозів в наступний спосіб: (19) Далі вводяться поправки для ймовірності ознак. Наприклад, нехай в нового об’єкта з діагнозом виявлено значення . Тоді для подальшої діагностики приймаються нові значення ймовірності градацій ознаки при діагнозі : (20) умовні імовірності ознак при інших діагнозах коректування не потребують.
|